IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v104y2020i2d10.1007_s11069-020-04233-z.html
   My bibliography  Save this article

Google Earth Engine for concurrent flood monitoring in the lower basin of Indo-Gangetic-Brahmaputra plains

Author

Listed:
  • Preet Lal

    (Central University of Jharkhand)

  • Aniket Prakash

    (Central University of Jharkhand)

  • Amit Kumar

    (Central University of Jharkhand)

Abstract

The present study focused on the recent flood inundation (July 2020) that occurred in the lower Indo-Gangetic-Brahmaputra plains (IGBP) using concurrent C-band Sentinel-1A Synthetic Aperture Radar images in Google Earth Engine. The study exhibited that a substantial proportion of IGBP (40,929 km2) was inundated primarily in Bangladesh (9.09% of the total inundation), Assam (8.99%), and Bihar (6.29%) during June–July 2020. The severe impact of flood inundation was observed in croplands (4.41% of the total cropland), followed by settlements (20.98% of the total settlements) that affected a large population (~ 10,046,262) in IGBP. The prevailing COVID-19 pandemic has debilitated the efforts of mitigation and responses to flooding risks. The study necessitates adopting an integrated, multi-hazard, multi-stakeholder approach with an emphasis on self-reliance of the community for sustenance with local resources and practices.

Suggested Citation

  • Preet Lal & Aniket Prakash & Amit Kumar, 2020. "Google Earth Engine for concurrent flood monitoring in the lower basin of Indo-Gangetic-Brahmaputra plains," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1947-1952, November.
  • Handle: RePEc:spr:nathaz:v:104:y:2020:i:2:d:10.1007_s11069-020-04233-z
    DOI: 10.1007/s11069-020-04233-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-020-04233-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-020-04233-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vishwas Kale, 2003. "Geomorphic Effects of Monsoon Floods on Indian Rivers," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 28(1), pages 65-84, January.
    2. P. C. D. Milly & R. T. Wetherald & K. A. Dunne & T. L. Delworth, 2002. "Increasing risk of great floods in a changing climate," Nature, Nature, vol. 415(6871), pages 514-517, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arvind Chandra Pandey & Kavita Kaushik & Bikash Ranjan Parida, 2022. "Google Earth Engine for Large-Scale Flood Mapping Using SAR Data and Impact Assessment on Agriculture and Population of Ganga-Brahmaputra Basin," Sustainability, MDPI, vol. 14(7), pages 1-22, April.
    2. Dinesh Singh Bhati & Swatantra Kumar Dubey & Devesh Sharma, 2021. "Application of Satellite-Based and Observed Precipitation Datasets for Hydrological Simulation in the Upper Mahi River Basin of Rajasthan, India," Sustainability, MDPI, vol. 13(14), pages 1-14, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P. V. Timbadiya & K. M. Krishnamraju, 2023. "A 2D hydrodynamic model for river flood prediction in a coastal floodplain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1143-1165, January.
    2. Sheng He & Dongmei Wang & Xuefeng Sang & Geng Niu, 2024. "Water Resource Regulation and Evaluation Method Based on Optimization of Drought-Limited Water Level in Reservoir Group," Sustainability, MDPI, vol. 16(16), pages 1-36, August.
    3. Hemen Mark Butu & Yongwon Seo & Jeung Soo Huh, 2020. "Determining Extremes for Future Precipitation in South Korea Based on RCP Scenarios Using Non-Parametric SPI," Sustainability, MDPI, vol. 12(3), pages 1-26, January.
    4. Jie Yang & Yimin Wang & Jun Yao & Jianxia Chang & Guoxin Xu & Xin Wang & Hui Hu, 2020. "Coincidence probability analysis of hydrologic low-flow under the changing environment in the Wei River Basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1711-1726, September.
    5. Michael Berlemann & Gerit Vogt, 2007. "Kurzfristige Wachstumseffekte von Naturkatastrophen," ifo Working Paper Series 52, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    6. Thomas D. Pol & Ekko C. Ierland & Silke Gabbert, 2017. "Economic analysis of adaptive strategies for flood risk management under climate change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(2), pages 267-285, February.
    7. Berlemann, Michael, 2015. "Hurricane Risk, Happiness and Life Satisfaction. Some Empirical Evidence on the Indirect Effects of Natural Disasters," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113073, Verein für Socialpolitik / German Economic Association.
    8. Álvarez, Xana & Gómez-Rúa, María & Vidal-Puga, Juan, 2019. "Risk prevention of land flood: A cooperative game theory approach," MPRA Paper 91515, University Library of Munich, Germany.
    9. Abedifar, Pejman & Kashizadeh, Seyed Javad & Ongena, Steven, 2024. "Flood, farms and credit: The role of branch banking in the era of climate change," Journal of Corporate Finance, Elsevier, vol. 85(C).
    10. C. Emdad Haque & Mahed-Ul-Islam Choudhury & Md. Sowayib Sikder, 2019. "“Events and failures are our only means for making policy changes”: learning in disaster and emergency management policies in Manitoba, Canada," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(1), pages 137-162, August.
    11. Teodor Kitczak & Heidi Jänicke & Marek Bury & Ryszard Malinowski, 2021. "The Usefulness of Mixtures with Festulolium braunii for the Regeneration of Grassland under Progressive Climate Change," Agriculture, MDPI, vol. 11(6), pages 1-20, June.
    12. Amin Owrangi & Robert Lannigan & Slobodan Simonovic, 2015. "Mapping climate change-caused health risk for integrated city resilience modeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 67-88, May.
    13. Zbigniew Kundzewicz & Nicola Lugeri & Rutger Dankers & Yukiko Hirabayashi & Petra Döll & Iwona Pińskwar & Tomasz Dysarz & Stefan Hochrainer & Piotr Matczak, 2010. "Assessing river flood risk and adaptation in Europe—review of projections for the future," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(7), pages 641-656, October.
    14. Pranay Paul & Rumki Sarkar, 2022. "Flood susceptible surface detection using geospatial multi-criteria framework for management practices," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 3015-3041, December.
    15. Michael Bernardi & Christa Hainz & Paulina Maier & Maria Waldinger, 2023. "A “Green Revolution” for Sub-Saharan Africa? Challenges and Opportunities," EconPol Policy Brief 54, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    16. Weili Duan & Bin He & Daniel Nover & Jingli Fan & Guishan Yang & Wen Chen & Huifang Meng & Chuanming Liu, 2016. "Floods and associated socioeconomic damages in China over the last century," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 401-413, May.
    17. Fei Huo & Li Xu & Yanping Li & James S. Famiglietti & Zhenhua Li & Yuya Kajikawa & Fei Chen, 2021. "Using big data analytics to synthesize research domains and identify emerging fields in urban climatology," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(1), January.
    18. Aparna Gupta & Abena Owusu & Jue Wang, 2024. "Assessing U.S. insurance firms' climate change impact and response," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 49(3), pages 571-604, July.
    19. Alam, Mohammad Faiz & Pavelic, Paul, 2020. "Underground Transfer of Floods for Irrigation (UTFI): exploring potential at the global scale," IWMI Research Reports H050008, International Water Management Institute.
    20. Michael Bernardi & Christa Hainz & Paulina Maier & Maria Waldinger, 2023. "Eine „Grüne Revolution“ in Subsahara-Afrika? Herausforderungen und Chancen," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 76(05), pages 29-33, May.

    More about this item

    Keywords

    Sentinel 1A; SAR; Flood hazard; Risk;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:104:y:2020:i:2:d:10.1007_s11069-020-04233-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.