IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i2p765-d1320019.html
   My bibliography  Save this article

Geological Disaster Susceptibility Evaluation Using a Random Forest Empowerment Information Quantity Model

Author

Listed:
  • Rongwei Li

    (Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China
    Yunnan International Joint Laboratory of Critical Mineral Resource, Kunming 650500, China)

  • Shucheng Tan

    (Yunnan International Joint Laboratory of Critical Mineral Resource, Kunming 650500, China
    School of Earth Science, Yunnan University, Kunming 650500, China)

  • Mingfei Zhang

    (Hanzhong Hydrology and Water Resources Survey Centre, Hanzhong 723000, China)

  • Shaohan Zhang

    (Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China
    Yunnan International Joint Laboratory of Critical Mineral Resource, Kunming 650500, China)

  • Haishan Wang

    (Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China
    Yunnan International Joint Laboratory of Critical Mineral Resource, Kunming 650500, China)

  • Lei Zhu

    (Hubei Key Laboratory of Earthquake Early Warning, Institute of Seismology, China Earthquake Administration, Wuhan 430071, China)

Abstract

Geological hazard susceptibility assessment (GSCA) is a crucial tool widely utilized by scholars worldwide for predicting the likelihood of geological disasters. The traditional information quantity model in geological disaster susceptibility evaluation, which superimposes the information quantity of each evaluation factor without considering their weights, often negatively impacts susceptibility zoning results. This paper introduces a method employing random forest (RF) empowerment information quantity to address this issue. The method involves calculating objective weights based on a parameter-optimized random forest model, assigning these weights to each evaluation factor, and then conducting a weighted superimposition of the information. Utilizing the natural discontinuity method, the resulting comprehensive information volume map was segmented. The proposed method was applied in Kang County, Gansu Province, and its performance was compared with that of traditional methods in terms of geological disaster susceptibility zoning maps, zoning of statistical disaster point density, and receiver operating characteristic (ROC) curve accuracy. The experimental findings indicate the superior accuracy and reliability of the proposed method over the traditional approach.

Suggested Citation

  • Rongwei Li & Shucheng Tan & Mingfei Zhang & Shaohan Zhang & Haishan Wang & Lei Zhu, 2024. "Geological Disaster Susceptibility Evaluation Using a Random Forest Empowerment Information Quantity Model," Sustainability, MDPI, vol. 16(2), pages 1-18, January.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:2:p:765-:d:1320019
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/2/765/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/2/765/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jie Dou & Hiromitsu Yamagishi & Hamid Pourghasemi & Ali Yunus & Xuan Song & Yueren Xu & Zhongfan Zhu, 2015. "An integrated artificial neural network model for the landslide susceptibility assessment of Osado Island, Japan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1749-1776, September.
    2. Kamila Pawluszek & Andrzej Borkowski, 2017. "Impact of DEM-derived factors and analytical hierarchy process on landslide susceptibility mapping in the region of Rożnów Lake, Poland," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 919-952, March.
    3. Cheng Su & Lili Wang & Xizhi Wang & Zhicai Huang & Xiaocan Zhang, 2015. "Mapping of rainfall-induced landslide susceptibility in Wencheng, China, using support vector machine," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1759-1779, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hua Zhu & Qing Zhang & Hailin You & Ying Liu, 2024. "Multi-Dimensional Assessment, Regional Differences, and Influencing Factors of Agricultural Water Pollution from the Perspective of Grey Water Footprint in Zhejiang Province, China," Agriculture, MDPI, vol. 14(11), pages 1-25, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Viet-Ha Nhu & Ataollah Shirzadi & Himan Shahabi & Sushant K. Singh & Nadhir Al-Ansari & John J. Clague & Abolfazl Jaafari & Wei Chen & Shaghayegh Miraki & Jie Dou & Chinh Luu & Krzysztof Górski & Binh, 2020. "Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms," IJERPH, MDPI, vol. 17(8), pages 1-30, April.
    2. Kourosh Shirani & Mehrdad Pasandi & Alireza Arabameri, 2018. "Landslide susceptibility assessment by Dempster–Shafer and Index of Entropy models, Sarkhoun basin, Southwestern Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(3), pages 1379-1418, September.
    3. Sina Paryani & Aminreza Neshat & Saman Javadi & Biswajeet Pradhan, 2020. "Comparative performance of new hybrid ANFIS models in landslide susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1961-1988, September.
    4. Christos Polykretis & Manolis G. Grillakis & Athanasios V. Argyriou & Nikos Papadopoulos & Dimitrios D. Alexakis, 2021. "Integrating Multivariate (GeoDetector) and Bivariate (IV) Statistics for Hybrid Landslide Susceptibility Modeling: A Case of the Vicinity of Pinios Artificial Lake, Ilia, Greece," Land, MDPI, vol. 10(9), pages 1-23, September.
    5. Siti Norsakinah Selamat & Nuriah Abd Majid & Mohd Raihan Taha & Ashraf Osman, 2022. "Landslide Susceptibility Model Using Artificial Neural Network (ANN) Approach in Langat River Basin, Selangor, Malaysia," Land, MDPI, vol. 11(6), pages 1-21, June.
    6. Weidong Wang & Zhuolei He & Zheng Han & Yange Li & Jie Dou & Jianling Huang, 2020. "Mapping the susceptibility to landslides based on the deep belief network: a case study in Sichuan Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3239-3261, September.
    7. Xianyu Yu & Tingting Xiong & Weiwei Jiang & Jianguo Zhou, 2023. "Comparative Assessment of the Efficacy of the Five Kinds of Models in Landslide Susceptibility Map for Factor Screening: A Case Study at Zigui-Badong in the Three Gorges Reservoir Area, China," Sustainability, MDPI, vol. 15(1), pages 1-26, January.
    8. Rodrigues, Eugénio & Gomes, Álvaro & Gaspar, Adélio Rodrigues & Henggeler Antunes, Carlos, 2018. "Estimation of renewable energy and built environment-related variables using neural networks – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 959-988.
    9. Wenjuan Sun & Paolo Bocchini & Brian D. Davison, 2020. "Applications of artificial intelligence for disaster management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 2631-2689, September.
    10. Richard Mind’je & Lanhai Li & Jean Baptiste Nsengiyumva & Christophe Mupenzi & Enan Muhire Nyesheja & Patient Mindje Kayumba & Aboubakar Gasirabo & Egide Hakorimana, 2020. "Landslide susceptibility and influencing factors analysis in Rwanda," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7985-8012, December.
    11. Fang Zou & Qingming Zhan & Weisi Zhang, 2018. "Quantifying the impact of human activities on geological hazards in mountainous areas: evidence from Shennongjia, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(1), pages 137-155, January.
    12. M. Ponziani & D. Ponziani & A. Giorgi & H. Stevenin & S. M. Ratto, 2023. "The use of machine learning techniques for a predictive model of debris flows triggered by short intense rainfall," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 143-162, May.
    13. Jonmenjoy Barman & Brototi Biswas & K. Srinivasa Rao, 2024. "A hybrid integration of analytical hierarchy process (AHP) and the multiobjective optimization on the basis of ratio analysis (MOORA) for landslide susceptibility zonation of Aizawl, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(9), pages 8571-8596, July.
    14. Quang-Khanh Nguyen & Dieu Tien Bui & Nhat-Duc Hoang & Phan Trong Trinh & Viet-Ha Nguyen & Isık Yilmaz, 2017. "A Novel Hybrid Approach Based on Instance Based Learning Classifier and Rotation Forest Ensemble for Spatial Prediction of Rainfall-Induced Shallow Landslides using GIS," Sustainability, MDPI, vol. 9(5), pages 1-24, May.
    15. Christos Polykretis & Christos Chalkias, 2018. "Comparison and evaluation of landslide susceptibility maps obtained from weight of evidence, logistic regression, and artificial neural network models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 249-274, August.
    16. Katarzyna A. Kurek & Wim Heijman & Johan Ophem & Stanisław Gędek & Jacek Strojny, 2022. "Measuring local competitiveness: comparing and integrating two methods PCA and AHP," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(3), pages 1371-1389, June.
    17. Wamba Danny Love Djukem & Anika Braun & Armand Sylvain Ludovic Wouatong & Christian Guedjeo & Katrin Dohmen & Pierre Wotchoko & Tomas Manuel Fernandez-Steeger & Hans-Balder Havenith, 2020. "Effect of Soil Geomechanical Properties and Geo-Environmental Factors on Landslide Predisposition at Mount Oku, Cameroon," IJERPH, MDPI, vol. 17(18), pages 1-27, September.
    18. Darya Golovko & Sigrid Roessner & Robert Behling & Birgit Kleinschmit, 2017. "Automated derivation and spatio-temporal analysis of landslide properties in southern Kyrgyzstan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(3), pages 1461-1488, February.
    19. Lanqian Feng & Mingming Guo & Wenlong Wang & Yulan Chen & Qianhua Shi & Wenzhao Guo & Yibao Lou & Hongliang Kang & Zhouxin Chen & Yanan Zhu, 2022. "Comparative Analysis of Machine Learning Methods and a Physical Model for Shallow Landslide Risk Modeling," Sustainability, MDPI, vol. 15(1), pages 1-18, December.
    20. Sérgio C. Oliveira & José L. Zêzere & Ricardo A. C. Garcia & Susana Pereira & Teresa Vaz & Raquel Melo, 2024. "Landslide susceptibility assessment using different rainfall event-based landslide inventories: advantages and limitations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(10), pages 9361-9399, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:2:p:765-:d:1320019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.