IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i12d10.1007_s11069-023-06150-3.html
   My bibliography  Save this article

Identification of coastal natural disasters using official databases to provide support for the coastal management: the case of Santa Catarina, Brazil

Author

Listed:
  • Karine Bastos Leal

    (Federal University of Rio Grande do Sul)

  • Luís Eduardo de Souza Robaina

    (Federal University of Santa Maria)

  • Thales Sehn Körting

    (National Institute for Space Research)

  • João Luiz Nicolodi

    (Federal University of Rio Grande)

  • Júlia Dasso Costa

    (Federal University of Rio Grande)

  • Vitória Gonçalves Souza

    (Federal University of Rio Grande)

Abstract

The increase in natural disaster frequency, intensified by climate change, poses one of the greatest threats to coastal systems and low-lying areas worldwide. It is estimated that the Global Mean Sea Level (GMSL) could rise by approximately 2 m in the twenty-first century, alongside intensifying cyclonic events. Consequently, in Brazil, coastal natural disasters are likely to become more frequent and intense, especially in the southern region. Thus, this study aims to identify, map and discuss coastal natural disasters in municipalities exposed to the open ocean belonging to the coastal zone of Santa Catarina (SC), Brazil, between 1998 and 2020. A review and dating of coastal natural disasters were conducted using four official databases: The Civil Defense of Santa Catarina website, Integrated Disaster Information System (S2ID), Santa Catarina Atlas of Natural Disasters, and the Brazilian Atlas of Natural Disasters. The data were organized into spreadsheets and mapped using QGIS 3.16.0 software. The results and main conclusions indicate: (1) More coastal disasters occurred in the north, central-north, and central sectors of SC between 1998 and 2020; (2) the period between 2010 and 2020 was more impactful; (3) the municipalities with the most records of coastal disasters were Balneário Barra do Sul, Itapoá and Florianópolis (considering only Ilha de Santa Catarina), respectively; (4) the three fastest-growing sectors are the north, central-north, and central; and (5) the seasons of autumn, spring, and winter, respectively, are more impacting for the study area.

Suggested Citation

  • Karine Bastos Leal & Luís Eduardo de Souza Robaina & Thales Sehn Körting & João Luiz Nicolodi & Júlia Dasso Costa & Vitória Gonçalves Souza, 2024. "Identification of coastal natural disasters using official databases to provide support for the coastal management: the case of Santa Catarina, Brazil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(12), pages 11465-11482, September.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:12:d:10.1007_s11069-023-06150-3
    DOI: 10.1007/s11069-023-06150-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-06150-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-06150-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Changsheng Chen & Zhaolin Lin & Robert C. Beardsley & Tom Shyka & Yu Zhang & Qichun Xu & Jianhua Qi & Huichan Lin & Danya Xu, 2021. "Impacts of sea level rise on future storm-induced coastal inundations over massachusetts coast," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 375-399, March.
    2. Robert J. Nicholls & Daniel Lincke & Jochen Hinkel & Sally Brown & Athanasios T. Vafeidis & Benoit Meyssignac & Susan E. Hanson & Jan-Ludolf Merkens & Jiayi Fang, 2021. "A global analysis of subsidence, relative sea-level change and coastal flood exposure," Nature Climate Change, Nature, vol. 11(4), pages 338-342, April.
    3. Karine Bastos Leal & Luís Eduardo de Souza Robaina & André de Souza De Lima, 2022. "Coastal impacts of storm surges on a changing climate: a global bibliometric analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1455-1476, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karine Bastos Leal & Luís Eduardo de Souza Robaina & André de Souza De Lima, 2022. "Coastal impacts of storm surges on a changing climate: a global bibliometric analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1455-1476, November.
    2. Nabanita Sarkar & Angela Rizzo & Vittoria Vandelli & Mauro Soldati, 2022. "A Literature Review of Climate-Related Coastal Risks in the Mediterranean, a Climate Change Hotspot," Sustainability, MDPI, vol. 14(23), pages 1-13, November.
    3. Selasi YAO AVORNYO & Kwasi APPEANING ADDO & Pietro TEATINI & Philip S.J. MINDERHOUD & Marie-Noëlle WOILLEZ, 2023. "Vulnerability of Ghana’s Coast to Relative Sea-level Rise: A Scoping Review," Working Paper c0e9d81f-7c77-47ca-ba56-a, Agence française de développement.
    4. Theodoros Chatzivasileiadis & Ignasi Cortes Arbues & Daniel Lincke & Jochen Hinkel & Theodoros Chatzivasileiadis & Richard S.J. Tol, "undated". "Actualised and future changes in regional economic growth through sea level rise," Working Paper Series 0324, Department of Economics, University of Sussex Business School.
    5. Alexandra Toimil & Iñigo J. Losada & Moisés Álvarez-Cuesta & Gonéri Cozannet, 2023. "Demonstrating the value of beaches for adaptation to future coastal flood risk," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Gabriel Bachner & Daniel Lincke & Jochen Hinkel, 2022. "The macroeconomic effects of adapting to high-end sea-level rise via protection and migration," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Marie-Noëlle WOILLEZ & Femi Emmanuel IKUEMONISAN & Vitalis Chidi OZEBO & Philip S.J. MINDERHOUD & Pietro TEATINI, 2023. "A scoping review of the vulnerability of Nigeria's coastland to sea-level rise and the contribution of land subsidence," Working Paper af68695f-dcee-4c1e-9daf-6, Agence française de développement.
    8. Leon HAUSER & Roberta BONI & Philip S.J. MINDERHOUD & Pietro TEATINI & Marie-Noëlle WOILLEZ & Rafael ALMAR & Selasi Yao AVORNYO & Kwasi APPEANING ADDO, 2023. "A scoping study on coastal vulnerability to relative sealevel rise in the Gulf of Guinea," Working Paper da6cc701-670f-4e44-bf9c-c, Agence française de développement.
    9. Rita Tufano & Luigi Guerriero & Mariagiulia Annibali Corona & Giuseppe Cianflone & Diego Di Martire & Fabio Ietto & Alessandro Novellino & Concetta Rispoli & Claudia Zito & Domenico Calcaterra, 2023. "Multiscenario flood hazard assessment using probabilistic runoff hydrograph estimation and 2D hydrodynamic modelling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 1029-1051, March.
    10. Chenlei Guan & Damin Dong & Feng Shen & Xin Gao & Linyan Chen, 2022. "Hierarchical Structure Model of Safety Risk Factors in New Coastal Towns: A Systematic Analysis Using the DEMATEL-ISM-SNA Method," IJERPH, MDPI, vol. 19(17), pages 1-17, August.
    11. He, J.Y. & Chan, P.W. & Li, Q.S. & Lee, C.W., 2022. "Characterizing coastal wind energy resources based on sodar and microwave radiometer observations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    12. Kui Xu & Chenyue Wang & Lingling Bin, 2023. "Compound flood models in coastal areas: a review of methods and uncertainty analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 469-496, March.
    13. Sally Brown & Katie Jenkins & Philip Goodwin & Daniel Lincke & Athanasios T. Vafeidis & Richard S. J. Tol & Rhosanna Jenkins & Rachel Warren & Robert J. Nicholls & Svetlana Jevrejeva & Agustin Sanchez, 2021. "Global costs of protecting against sea-level rise at 1.5 to 4.0 °C," Climatic Change, Springer, vol. 167(1), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:12:d:10.1007_s11069-023-06150-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.