IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v116y2023i3d10.1007_s11069-022-05807-9.html
   My bibliography  Save this article

Assessment and characterisation of hydrometeorological droughts in the Upper Mzingwane sub-catchment of Zimbabwe

Author

Listed:
  • Bright Chisadza

    (Lupane State University
    Uganda Martyrs University)

  • Onalenna Gwate

    (Lupane State University)

  • France Ncube

    (Lupane State University)

  • Nkululeko Mpofu

    (Lupane State University)

Abstract

Analysis of frequency and severity of droughts is critical for assessing the availability of surface water in ecosystems and for water resource planning. This study investigated hydrometeorological drought in the Upper Mzingwane sub-catchment using the standardised precipitation index (SPI) and reconnaissance drought index (RDI). Precipitation, minimum and maximum temperature data from three stations in the sub-catchment were used to calculate RDI and SPI for the period 1990–2020. Two-tailed Mann–Kendall and Pettitt tests were conducted to identify trends and breaks in the RDI and SPI values. The results showed that the sub-catchment was mainly affected by mild (62%) and moderate (20%) droughts. Significant increasing trends were observed for the calculated 6- and 12-month SPI and RDI values (p 0.05). The Pettitt test did not detect any breaks in the RDI and SPI values. SPI and RDI showed strong correlation coefficients (0.93–0.99) over similar time periods. Thus, both indices behaved in the same manner across multiple time intervals (3, 6, 9 and 12 months), but RDI was more sensitive to climatic conditions because its formulation incorporates potential evapotranspiration. Approximately 14–16 droughts of varying severity occurred in the sub-catchment from 1990 to 2020. Despite increasing precipitation pattern, the catchment was still vulnerable to drought and this could undermine the ability of the catchment to deliver requisite ecosystem services such as water provision. Thus, drought forecasting, and information dissemination will be crucial to help stakeholders better prepare for future droughts in the sub-catchment.

Suggested Citation

  • Bright Chisadza & Onalenna Gwate & France Ncube & Nkululeko Mpofu, 2023. "Assessment and characterisation of hydrometeorological droughts in the Upper Mzingwane sub-catchment of Zimbabwe," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3275-3299, April.
  • Handle: RePEc:spr:nathaz:v:116:y:2023:i:3:d:10.1007_s11069-022-05807-9
    DOI: 10.1007/s11069-022-05807-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-022-05807-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-022-05807-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Donald Wilhite & Mark Svoboda & Michael Hayes, 2007. "Understanding the complex impacts of drought: A key to enhancing drought mitigation and preparedness," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(5), pages 763-774, May.
    2. Isameldin Abakar Atiem & Magdi S. A. Siddig & Shindume Lomboleni Hamukwaya & Hussein Ibrahim Ahmed & Mazahir M. M. Taha & Salma Ibrahim & Yahia Osman, 2022. "Assessment of Seasonal Rainfall Drought Indices, Nyala City Sudan," Agriculture, MDPI, vol. 12(7), pages 1-14, July.
    3. Dorte Verner & David Treguer & John Redwood & Jen Christensen & Rachael McDonnell & Christine Elbert & Yasuo Konishi, 2018. "Climate Variability, Drought, and Drought Management in Tunisia's Agricultural Sector," World Bank Publications - Reports 30604, The World Bank Group.
    4. Jacqueline Uwimbabazi & Yuanshu Jing & Vedaste Iyakaremye & Irfan Ullah & Brian Ayugi, 2022. "Observed Changes in Meteorological Drought Events during 1981–2020 over Rwanda, East Africa," Sustainability, MDPI, vol. 14(3), pages 1-21, January.
    5. Abdol Rassoul Zarei & Mohammad Reza Mahmoudi, 2022. "Assessing and Predicting the Vulnerability to Agrometeorological Drought Using the Fuzzy-AHP and Second-order Markov Chain techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4403-4424, September.
    6. Justin Sheffield & Eric F. Wood & Michael L. Roderick, 2012. "Little change in global drought over the past 60 years," Nature, Nature, vol. 491(7424), pages 435-438, November.
    7. Hadi Galavi & Majid Mirzaei, 2020. "Analyzing Uncertainty Drivers of Climate Change Impact Studies in Tropical and Arid Climates," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(6), pages 2097-2109, April.
    8. Abdol Rassoul Zarei & Mohammad Mehdi Moghimi & Elham Koohi, 2021. "Sensitivity Assessment to the Occurrence of Different Types of Droughts Using GIS and AHP Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3593-3615, September.
    9. G. Tsakiris & D. Pangalou & H. Vangelis, 2007. "Regional Drought Assessment Based on the Reconnaissance Drought Index (RDI)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(5), pages 821-833, May.
    10. Dorte Verner & David Treguer & John Redwood & Jens Christensen & Rachael McDonnell & Christine Elbert & Yasuo Konishi & Saad Belghazi, 2018. "Climate Variability, Drought, and Drought Management in Morocco's Agricultural Sector," World Bank Publications - Reports 30603, The World Bank Group.
    11. Sheunesu Ruwanza & Gladman Thondhlana & Menelisi Falayi, 2022. "Research Progress and Conceptual Insights on Drought Impacts and Responses among Smallholder Farmers in South Africa: A Review," Land, MDPI, vol. 11(2), pages 1-16, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Ghabaei Sough & Hamid Zare Abyaneh & Abolfazl Mosaedi, 2018. "Assessing a Multivariate Approach Based on Scalogram Analysis for Agricultural Drought Monitoring," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3423-3440, August.
    2. Pere Quintana-Seguí & Anaïs Barella-Ortiz & Sabela Regueiro-Sanfiz & Gonzalo Miguez-Macho, 2020. "The Utility of Land-Surface Model Simulations to Provide Drought Information in a Water Management Context Using Global and Local Forcing Datasets," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(7), pages 2135-2156, May.
    3. Francisco José Del-Toro-Guerrero & Luis Walter Daesslé & Rodrigo Méndez-Alonzo & Thomas Kretzschmar, 2022. "Surface Reflectance–Derived Spectral Indices for Drought Detection: Application to the Guadalupe Valley Basin, Baja California, Mexico," Land, MDPI, vol. 11(6), pages 1-19, May.
    4. E. Preziosi & A. Bon & E. Romano & A. Petrangeli & S. Casadei, 2013. "Vulnerability to Drought of a Complex Water Supply System. The Upper Tiber Basin Case Study (Central Italy)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4655-4678, October.
    5. Aymen Sawassi & Roula Khadra & Brian Crookston, 2024. "Water Banking as a Strategy for the Management and Conservation of a Critical Resource: A Case Study from Tunisia’s Medjerda River Basin (MRB)," Sustainability, MDPI, vol. 16(9), pages 1-20, May.
    6. Xinyu Fu & Mark Svoboda & Zhenghong Tang & Zhijun Dai & Jianjun Wu, 2013. "An overview of US state drought plans: crisis or risk management?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1607-1627, December.
    7. U. Surendran & B. Anagha & P. Raja & V. Kumar & K. Rajan & M. Jayakumar, 2019. "Analysis of Drought from Humid, Semi-Arid and Arid Regions of India Using DrinC Model with Different Drought Indices," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(4), pages 1521-1540, March.
    8. Anthony S. Kiem & Fiona Johnson & Seth Westra & Albert Dijk & Jason P. Evans & Alison O’Donnell & Alexandra Rouillard & Cameron Barr & Jonathan Tyler & Mark Thyer & Doerte Jakob & Fitsum Woldemeskel &, 2016. "Natural hazards in Australia: droughts," Climatic Change, Springer, vol. 139(1), pages 37-54, November.
    9. Panagiotis D. Oikonomou & Christos A. Karavitis & Demetrios E. Tsesmelis & Elpida Kolokytha & Rodrigo Maia, 2020. "Drought Characteristics Assessment in Europe over the Past 50 Years," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4757-4772, December.
    10. Lampros Vasiliades & Athanasios Loukas & Nikos Liberis, 2011. "A Water Balance Derived Drought Index for Pinios River Basin, Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(4), pages 1087-1101, March.
    11. Youxin Wang & Tao Peng & Qingxia Lin & Vijay P. Singh & Xiaohua Dong & Chen Chen & Ji Liu & Wenjuan Chang & Gaoxu Wang, 2022. "A New Non-stationary Hydrological Drought Index Encompassing Climate Indices and Modified Reservoir Index as Covariates," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2433-2454, May.
    12. Jagadish Padhiary & Kanhu Charan Patra & Sonam Sandeep Dash, 2022. "A Novel Approach to Identify the Characteristics of Drought under Future Climate Change Scenario," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5163-5189, October.
    13. Ruperto Ortiz-Gómez & Roberto S. Flowers-Cano & Guillermo Medina-García, 2022. "Sensitivity of the RDI and SPEI Drought Indices to Different Models for Estimating Evapotranspiration Potential in Semiarid Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2471-2492, May.
    14. Cai, Siyang & Zuo, Depeng & Wang, Huixiao & Xu, Zongxue & Wang, GuoQing & Yang, Hong, 2023. "Assessment of agricultural drought based on multi-source remote sensing data in a major grain producing area of Northwest China," Agricultural Water Management, Elsevier, vol. 278(C).
    15. Pechan, Paul M. & Bohle, Heidi & Obster, Fabian, 2023. "Reducing vulnerability of fruit orchards to climate change," Agricultural Systems, Elsevier, vol. 210(C).
    16. Yong-Wei Liu & Wen Wang & Yi-Ming Hu & Zhong-Min Liang, 2014. "Drought assessment and uncertainty analysis for Dapoling basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1613-1627, December.
    17. Nam, Won-Ho & Hayes, Michael J. & Svoboda, Mark D. & Tadesse, Tsegaye & Wilhite, Donald A., 2015. "Drought hazard assessment in the context of climate change for South Korea," Agricultural Water Management, Elsevier, vol. 160(C), pages 106-117.
    18. Abolfazl Mosaedi & Hamid Zare Abyaneh & Mohammad Ghabaei Sough & S. Samadi, 2015. "Quantifying Changes in Reconnaissance Drought Index using Equiprobability Transformation Function," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2451-2469, June.
    19. Hasan Tatli & H. Nüzhet Dalfes, 2020. "Long-Time Memory in Drought via Detrended Fluctuation Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(3), pages 1199-1212, February.
    20. Yi Liu & Xiaoli Yang & Liliang Ren & Fei Yuan & Shanhu Jiang & Mingwei Ma, 2015. "A New Physically Based Self-Calibrating Palmer Drought Severity Index and its Performance Evaluation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(13), pages 4833-4847, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:116:y:2023:i:3:d:10.1007_s11069-022-05807-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.