Machine learning network suitable for accurate rapid seismic risk estimation of masonry building stocks
Author
Abstract
Suggested Citation
DOI: 10.1007/s11069-022-05553-y
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ehsan Harirchian & Tom Lahmer & Vandana Kumari & Kirti Jadhav, 2020. "Application of Support Vector Machine Modeling for the Rapid Seismic Hazard Safety Evaluation of Existing Buildings," Energies, MDPI, vol. 13(13), pages 1-15, June.
- Takaya Saito & Marc Rehmsmeier, 2015. "The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-21, March.
- S. Rajarathnam & A. Santhakumar, 2015. "Assessment of seismic building vulnerability based on rapid visual screening technique aided by aerial photographs on a GIS platform," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(2), pages 779-802, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
- Le, Hong Hanh & Viviani, Jean-Laurent, 2018.
"Predicting bank failure: An improvement by implementing a machine-learning approach to classical financial ratios,"
Research in International Business and Finance, Elsevier, vol. 44(C), pages 16-25.
- Hong Hanh Le & Jean-Laurent Viviani, 2018. "Predicting bank failure: An improvement by implementing machine learning approach on classical financial ratios," Post-Print halshs-01615106, HAL.
- João Chang Junior & Fábio Binuesa & Luiz Fernando Caneo & Aida Luiza Ribeiro Turquetto & Elisandra Cristina Trevisan Calvo Arita & Aline Cristina Barbosa & Alfredo Manoel da Silva Fernandes & Evelinda, 2020. "Improving preoperative risk-of-death prediction in surgery congenital heart defects using artificial intelligence model: A pilot study," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-21, September.
- Arthur De Sá Ferreira & Ney Meziat-Filho & Ana Paula Antunes Ferreira, 2021. "Double threshold receiver operating characteristic plot for three-modal continuous predictors," Computational Statistics, Springer, vol. 36(3), pages 2231-2245, September.
- Masabho P Milali & Samson S Kiware & Nicodem J Govella & Fredros Okumu & Naveen Bansal & Serdar Bozdag & Jacques D Charlwood & Marta F Maia & Sheila B Ogoma & Floyd E Dowell & George F Corliss & Maggy, 2020. "An autoencoder and artificial neural network-based method to estimate parity status of wild mosquitoes from near-infrared spectra," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-16, June.
- Kajal Lahiri & Cheng Yang, 2023.
"ROC and PRC Approaches to Evaluate Recession Forecasts,"
Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 19(2), pages 119-148, September.
- Kajal Lahiri & Cheng Yang, 2023. "ROC and PRC Approaches to Evaluate Recession Forecasts," CESifo Working Paper Series 10449, CESifo.
- Tzu-Hsuan Lin & Jehn-Ruey Jiang, 2021. "Credit Card Fraud Detection with Autoencoder and Probabilistic Random Forest," Mathematics, MDPI, vol. 9(21), pages 1-16, October.
- Alfred Krzywicki & David Muchlinski & Benjamin E. Goldsmith & Arcot Sowmya, 2022. "From academia to policy makers: a methodology for real-time forecasting of infrequent events," Journal of Computational Social Science, Springer, vol. 5(2), pages 1489-1510, November.
- Marco Due~nas & V'ictor Ortiz & Massimo Riccaboni & Francesco Serti, 2021.
"Assessing the Impact of COVID-19 on Trade: a Machine Learning Counterfactual Analysis,"
Papers
2104.04570, arXiv.org.
- Dueñas, Marco & Ortiz, Víctor & Riccaboni, Massimo & Serti, Francesco, 2021. "Assessing the Impact of COVID-19 on Trade: a Machine Learning Counterfactual Analysis," Working papers 79, Red Investigadores de Economía.
- Wei-Hsuan Lo-Ciganic & Julie M Donohue & Eric G Hulsey & Susan Barnes & Yuan Li & Courtney C Kuza & Qingnan Yang & Jeanine Buchanich & James L Huang & Christina Mair & Debbie L Wilson & Walid F Gellad, 2021. "Integrating human services and criminal justice data with claims data to predict risk of opioid overdose among Medicaid beneficiaries: A machine-learning approach," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-18, March.
- Nica-Avram, Georgiana & Harvey, John & Smith, Gavin & Smith, Andrew & Goulding, James, 2021. "Identifying food insecurity in food sharing networks via machine learning," Journal of Business Research, Elsevier, vol. 131(C), pages 469-484.
- Ali J. Ghandour & Huda Hammoud & Samar Al-Hajj, 2020. "Analyzing Factors Associated with Fatal Road Crashes: A Machine Learning Approach," IJERPH, MDPI, vol. 17(11), pages 1-13, June.
- Song, Kwonsik & Anderson, Kyle & Lee, SangHyun, 2020. "An energy-cyber-physical system for personalized normative messaging interventions: Identification and classification of behavioral reference groups," Applied Energy, Elsevier, vol. 260(C).
- Fisnik Doko & Slobodan Kalajdziski & Igor Mishkovski, 2021. "Credit Risk Model Based on Central Bank Credit Registry Data," JRFM, MDPI, vol. 14(3), pages 1-17, March.
- Abouelmagd THM, 2018. "A New Flexible Distribution Based on the Zero Truncated Poisson Distribution: Mathematical Properties and Applications to Lifetime Data," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 8(1), pages 10-16, August.
- Bouvatier, Vincent & El Ouardi, Sofiane, 2023.
"Credit gaps as banking crisis predictors: A different tune for middle- and low-income countries,"
Emerging Markets Review, Elsevier, vol. 54(C).
- Vincent Bouvatier & Sofiane El Ouardi, 2021. "Credit gaps as banking crisis predictors: a different tune for middle- and low-income countries," Erudite Working Paper 2021-15, Erudite.
- Vincent Bouvatier & Sofiane El Ouardi, 2023. "Credit gaps as banking crisis predictors: A different tune for middle- and low-income countries," Post-Print hal-04286360, HAL.
- Faith M. Hartley & Aaron E. Maxwell & Rick E. Landenberger & Zachary J. Bortolot, 2022. "Forest Type Differentiation Using GLAD Phenology Metrics, Land Surface Parameters, and Machine Learning," Geographies, MDPI, vol. 2(3), pages 1-25, August.
- Artur Sokolovsky & Luca Arnaboldi & Jaume Bacardit & Thomas Gross, 2021. "Volume-Centred Range Bars: Novel Interpretable Representation of Financial Markets Designed for Machine Learning Applications," Papers 2103.12419, arXiv.org, revised May 2022.
- Soyoung Oh & Honggeun Ji & Jina Kim & Eunil Park & Angel P. del Pobil, 2022. "Deep learning model based on expectation-confirmation theory to predict customer satisfaction in hospitality service," Information Technology & Tourism, Springer, vol. 24(1), pages 109-126, March.
- John Muschelli, 2020. "ROC and AUC with a Binary Predictor: a Potentially Misleading Metric," Journal of Classification, Springer;The Classification Society, vol. 37(3), pages 696-708, October.
More about this item
Keywords
Seismic risk estimations; Masonry structures; Machine learning; Seismic risk classification;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:115:y:2023:i:1:d:10.1007_s11069-022-05553-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.