IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v113y2022i1d10.1007_s11069-022-05300-3.html
   My bibliography  Save this article

Environmental indicators combined with risk analysis to evaluate potential wildfire incidence on the Dadu Plateau in Taiwan

Author

Listed:
  • Chao-Yuan Lin

    (National Chung Hsing University)

  • Pei-Ying Shieh

    (National Chung Hsing University)

  • Shao-Wei Wu

    (National Chung Hsing University)

  • Po-Cheng Wang

    (National Chung Hsing University)

  • Yung-Chau Chen

    (National Chung Hsing University)

Abstract

Wildfire is a common disaster in the world, and it has a considerable impact on the safety of residents and ecological disturbance. Periodic wildfires are an urgent problem to be solved. This research uses big data from relevant departments to extract environmental indicators that affect wildfires, including satellite images, meteorological observations, and field surveys and establishes a risk model for the Spatio-temporal distribution of wildfires based on risk analysis. Previous studies using Differenced Normalized Burn Ratio (dNBR) to assess fire severity and distinguish wildfire ruins did not deal with the impact of atmospheric humidity on dNBR values. In this study, an adjustable fire threshold was developed to enable dNBR to improve the accuracy of identifying wildfire locations. Regarding the temporal distribution of wildfire risks, environmental vulnerability cannot specifically reflect the frequency of actual wildfires. If the hazard degree is introduced to calculate the wildfire risk, the coefficient of determination can be increased from 0.49 to 0.79. The verification of the village boundary zone depicts that the risk analysis can effectively show the temporal and spatial distribution of wildfire hotspots. On this basis, a village-level wildfire disaster prevention strategy can be formulated.

Suggested Citation

  • Chao-Yuan Lin & Pei-Ying Shieh & Shao-Wei Wu & Po-Cheng Wang & Yung-Chau Chen, 2022. "Environmental indicators combined with risk analysis to evaluate potential wildfire incidence on the Dadu Plateau in Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 287-313, August.
  • Handle: RePEc:spr:nathaz:v:113:y:2022:i:1:d:10.1007_s11069-022-05300-3
    DOI: 10.1007/s11069-022-05300-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-022-05300-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-022-05300-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marco Turco & Juan José Rosa-Cánovas & Joaquín Bedia & Sonia Jerez & Juan Pedro Montávez & Maria Carmen Llasat & Antonello Provenzale, 2018. "Exacerbated fires in Mediterranean Europe due to anthropogenic warming projected with non-stationary climate-fire models," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    2. W. Matt Jolly & Mark A. Cochrane & Patrick H. Freeborn & Zachary A. Holden & Timothy J. Brown & Grant J. Williamson & David M. J. S. Bowman, 2015. "Climate-induced variations in global wildfire danger from 1979 to 2013," Nature Communications, Nature, vol. 6(1), pages 1-11, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bruno A. Aparício & João A. Santos & Teresa R. Freitas & Ana C. L. Sá & José M. C. Pereira & Paulo M. Fernandes, 2022. "Unravelling the effect of climate change on fire danger and fire behaviour in the Transboundary Biosphere Reserve of Meseta Ibérica (Portugal-Spain)," Climatic Change, Springer, vol. 173(1), pages 1-20, July.
    2. Alexandra D Syphard & Timothy Sheehan & Heather Rustigian-Romsos & Kenneth Ferschweiler, 2018. "Mapping future fire probability under climate change: Does vegetation matter?," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-23, August.
    3. Carmenta, Rachel & Cammelli, Federico & Dressler, Wolfram & Verbicaro, Camila & Zaehringer, Julie G., 2021. "Between a rock and a hard place: The burdens of uncontrolled fire for smallholders across the tropics," World Development, Elsevier, vol. 145(C).
    4. Licia Felicioni & Antonín Lupíšek & Petr Hájek, 2020. "Major European Stressors and Potential of Available Tools for Assessment of Urban and Buildings Resilience," Sustainability, MDPI, vol. 12(18), pages 1-27, September.
    5. Lucash, Melissa S. & Marshall, Adrienne M. & Weiss, Shelby A. & McNabb, John W. & Nicolsky, Dmitry J. & Flerchinger, Gerald N. & Link, Timothy E. & Vogel, Jason G. & Scheller, Robert M. & Abramoff, Ro, 2023. "Burning trees in frozen soil: Simulating fire, vegetation, soil, and hydrology in the boreal forests of Alaska," Ecological Modelling, Elsevier, vol. 481(C).
    6. Jake F. Weltzin & Julio L. Betancourt & Benjamin I. Cook & Theresa M. Crimmins & Carolyn A. F. Enquist & Michael D. Gerst & John E. Gross & Geoffrey M. Henebry & Rebecca A. Hufft & Melissa A. Kenney &, 2020. "Seasonality of biological and physical systems as indicators of climatic variation and change," Climatic Change, Springer, vol. 163(4), pages 1755-1771, December.
    7. Sergi Nuss-Girona & Emma Soy & Guillem Canaleta & Ona Alay & Rut Domènech & Núria Prat-Guitart, 2022. "Fire Flocks: Participating Farmers’ Perceptions after Five Years of Development," Land, MDPI, vol. 11(10), pages 1-19, October.
    8. Johnston, David W. & Önder, Yasin Kürşat & Rahman, Muhammad Habibur & Ulubaşoğlu, Mehmet A., 2021. "Evaluating wildfire exposure: Using wellbeing data to estimate and value the impacts of wildfire," Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 782-798.
    9. Andrea Duane & Marc Castellnou & Lluís Brotons, 2021. "Towards a comprehensive look at global drivers of novel extreme wildfire events," Climatic Change, Springer, vol. 165(3), pages 1-21, April.
    10. Stosic, Tatijana & Stosic, Borko, 2024. "Generalized weighted permutation entropy analysis of satellite hot-pixel time series in Brazilian biomes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
    11. Aguilera, Eduardo & Díaz-Gaona, Cipriano & García-Laureano, Raquel & Reyes-Palomo, Carolina & Guzmán, Gloria I. & Ortolani, Livia & Sánchez-Rodríguez, Manuel & Rodríguez-Estévez, Vicente, 2020. "Agroecology for adaptation to climate change and resource depletion in the Mediterranean region. A review," Agricultural Systems, Elsevier, vol. 181(C).
    12. Rafaello Bergonse & Sandra Oliveira & Ana Gonçalves & Sílvia Nunes & Carlos Câmara & José Luis Zêzere, 2021. "A combined structural and seasonal approach to assess wildfire susceptibility and hazard in summertime," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2545-2573, April.
    13. Rossi, David & Kuusela, Olli-Pekka & Dunn, Christopher, 2022. "A microeconometric analysis of wildfire suppression decisions in the Western United States," Ecological Economics, Elsevier, vol. 200(C).
    14. Foster, Adrianna C. & Shuman, Jacquelyn K. & Shugart, Herman H. & Dwire, Kathleen A. & Fornwalt, Paula J. & Sibold, Jason & Negron, Jose, 2017. "Validation and application of a forest gap model to the southern Rocky Mountains," Ecological Modelling, Elsevier, vol. 351(C), pages 109-128.
    15. Zhongwei Liu & Jonathan M. Eden & Bastien Dieppois & Matthew Blackett, 2022. "A global view of observed changes in fire weather extremes: uncertainties and attribution to climate change," Climatic Change, Springer, vol. 173(1), pages 1-20, July.
    16. Miranda, Jonathan da Rocha & Juvanhol, Ronie Silva & da Silva, Rosane Gomes, 2023. "Use of maximum entropy to improve validation and prediction of active fires in a Brazilian savanna region," Ecological Modelling, Elsevier, vol. 475(C).
    17. Melania Michetti & Mehmet Pinar, 2019. "Forest Fires Across Italian Regions and Implications for Climate Change: A Panel Data Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(1), pages 207-246, January.
    18. Emily S Hope & Daniel W McKenney & John H Pedlar & Brian J Stocks & Sylvie Gauthier, 2016. "Wildfire Suppression Costs for Canada under a Changing Climate," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-18, August.
    19. Misal, Haleema & Varela, Elsa & Voulgarakis, Apostolos & Rovithakis, Anastasios & Grillakis, Manolis & Kountouris, Yiannis, 2023. "Assessing public preferences for a wildfire mitigation policy in Crete, Greece," Forest Policy and Economics, Elsevier, vol. 153(C).
    20. Foster, Adrianna C. & Armstrong, Amanda H. & Shuman, Jacquelyn K. & Shugart, Herman H. & Rogers, Brendan M. & Mack, Michelle C. & Goetz, Scott J. & Ranson, K. Jon, 2019. "Importance of tree- and species-level interactions with wildfire, climate, and soils in interior Alaska: Implications for forest change under a warming climate," Ecological Modelling, Elsevier, vol. 409(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:113:y:2022:i:1:d:10.1007_s11069-022-05300-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.