IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v112y2022i2d10.1007_s11069-022-05247-5.html
   My bibliography  Save this article

Power-law behaviors of the severity levels of unhealthy air pollution events

Author

Listed:
  • Nurulkamal Masseran

    (Universiti Kebangsaan Malaysia)

Abstract

The severity level of air pollution refers to the cumulative effect of unhealthy air pollutant index (API) values during certain air pollution events. High severity levels indicate a negative effect on human health, a disruption in economic activities, and possible disastrous consequences on the environmental ecosystem. This study investigated the power-law behaviors of air pollution events with high severity levels. Three types of power-law models were used to analyze the API data in Klang, Malaysia. The results revealed that the continuous power-law distribution is a reliable model for describing the power-law behaviors that occur in the upper tail of the API distribution. Air pollution events with severity levels greater than a threshold of 1221 were found to exhibit power-law behaviors. On this basis, this study suggest that authorities exercise vigilance with respect to pollution incidents with severity levels exceeding the 1221 threshold.

Suggested Citation

  • Nurulkamal Masseran, 2022. "Power-law behaviors of the severity levels of unhealthy air pollution events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1749-1766, June.
  • Handle: RePEc:spr:nathaz:v:112:y:2022:i:2:d:10.1007_s11069-022-05247-5
    DOI: 10.1007/s11069-022-05247-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-022-05247-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-022-05247-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Muhammad Aslam Mohd Safari & Nurulkamal Masseran & Kamarulzaman Ibrahim, 2019. "On the identification of extreme outliers and dragon-kings mechanisms in the upper tail of income distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(10), pages 1886-1902, July.
    2. Gillespie, Colin S., 2015. "Fitting Heavy Tailed Distributions: The poweRlaw Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 64(i02).
    3. Bruce Malamud & Donald Turcotte, 1999. "Self-Organized Criticality Applied to Natural Hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 20(2), pages 93-116, November.
    4. Chunshui Lin & Ru-Jin Huang & Darius Ceburnis & Paul Buckley & Jana Preissler & John Wenger & Matteo Rinaldi & Maria Christina Facchini & Colin O’Dowd & Jurgita Ovadnevaite, 2018. "Extreme air pollution from residential solid fuel burning," Nature Sustainability, Nature, vol. 1(9), pages 512-517, September.
    5. Wang, Qizhen, 2019. "Multifractal characterization of air polluted time series in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 167-180.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nurulkamal Masseran & Muhammad Aslam Mohd Safari, 2022. "Statistical Modeling on the Severity of Unhealthy Air Pollution Events in Malaysia," Mathematics, MDPI, vol. 10(16), pages 1-15, August.
    2. Nurulkamal Masseran, 2022. "Multifractal Characteristics on Temporal Maximum of Air Pollution Series," Mathematics, MDPI, vol. 10(20), pages 1-15, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Weijie & Li, Baisong & Han, Min, 2020. "A novel Granger causality method based on HSIC-Lasso for revealing nonlinear relationship between multivariate time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    2. Li, Xing, 2021. "On the multifractal analysis of air quality index time series before and during COVID-19 partial lockdown: A case study of Shanghai, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    3. Katahira, Kei & Chen, Yu & Akiyama, Eizo, 2021. "Self-organized Speculation Game for the spontaneous emergence of financial stylized facts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    4. Yao, Can-Zhong & Liu, Cheng & Ju, Wei-Jia, 2020. "Multifractal analysis of the WTI crude oil market, US stock market and EPU," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    5. Cura, Robin & Cottineau, Clémentine & Swerts, Elfie & Ignazzi, Cosmo Antonio & Bretagnolle, Anne & Vacchiani-Marcuzzo, Celine & Pumain, Denise, 2017. "The Old and the New: Qualifying City Systems in the World with Classical Models and New Data," SocArXiv pbzn6, Center for Open Science.
    6. repec:wsi:acsxxx:v:21:y:2018:i:08:n:s0219525918500194 is not listed on IDEAS
    7. Ma, Dewei & Ren, Weijie & Han, Min, 2022. "A two-stage causality method for time series prediction based on feature selection and momentary conditional independence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    8. Tiandong Wang & Sidney Resnick, 2023. "Poisson Edge Growth and Preferential Attachment Networks," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-25, March.
    9. Xue Cui & Lu Yang, 2024. "Systemic risk and idiosyncratic networks among global systemically important banks," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(1), pages 58-75, January.
    10. Kei Katahira & Yu Chen, 2019. "Heterogeneous wealth distribution, round-trip trading and the emergence of volatility clustering in Speculation Game," Papers 1909.03185, arXiv.org.
    11. Jones, Jason J., 2021. "A Dataset for the Study of Identity at Scale: Annual Prevalence of American Twitter Users with specified Token in their Profile Bio - 2015-2020," SocArXiv cm5g7, Center for Open Science.
    12. Torres-Rojo, Juan Manuel & Bahena-González, Roberto, 2018. "Scale invariant behavior of cropping area losses," Agricultural Systems, Elsevier, vol. 165(C), pages 33-43.
    13. S. Lozano & L. Calzada-Infante & B. Adenso-Díaz & S. García, 2019. "Complex network analysis of keywords co-occurrence in the recent efficiency analysis literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(2), pages 609-629, August.
    14. Pedro A. Solares-Hernández & Fernando A. Manzano & Francisco J. Pérez-Benito & J. Alberto Conejero, 2020. "Divisibility Patterns within Pascal Divisibility Networks," Mathematics, MDPI, vol. 8(2), pages 1-10, February.
    15. Safari, Muhammad Aslam Mohd & Masseran, Nurulkamal & Ibrahim, Kamarulzaman & Hussain, Saiful Izzuan, 2021. "Measuring income inequality: A robust semi-parametric approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    16. Weili Chen & Jun Wu & Zibin Zheng & Chuan Chen & Yuren Zhou, 2019. "Market Manipulation of Bitcoin: Evidence from Mining the Mt. Gox Transaction Network," Papers 1902.01941, arXiv.org.
    17. Wanmo Kang & Jinhyung Chon & GoWoon Kim, 2020. "Urban Ecosystem Services: A Review of the Knowledge Components and Evolution in the 2010s," Sustainability, MDPI, vol. 12(23), pages 1-12, November.
    18. Kei Katahira & Yu Chen & Gaku Hashimoto & Hiroshi Okuda, 2019. "Development of an agent-based speculation game for higher reproducibility of financial stylized facts," Papers 1902.02040, arXiv.org.
    19. Pongnumkul, Suchit & Motohashi, Kazuyuki, 2018. "A bipartite fitness model for online music streaming services," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1125-1137.
    20. Nurulkamal Masseran, 2022. "Multifractal Characteristics on Temporal Maximum of Air Pollution Series," Mathematics, MDPI, vol. 10(20), pages 1-15, October.
    21. Santos, Fábio Sandro dos & Nascimento, Kerolly Kedma Felix do & Jale, Jader da Silva & Stosic, Tatijana & Marinho, Manoel H.N. & Ferreira, Tiago A.E., 2021. "Mixture distribution and multifractal analysis applied to wind speed in the Brazilian Northeast region," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:112:y:2022:i:2:d:10.1007_s11069-022-05247-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.