IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v46y2019i10p1886-1902.html
   My bibliography  Save this article

On the identification of extreme outliers and dragon-kings mechanisms in the upper tail of income distribution

Author

Listed:
  • Muhammad Aslam Mohd Safari
  • Nurulkamal Masseran
  • Kamarulzaman Ibrahim

Abstract

The presence of extreme outliers in the upper tail data of income distribution affects the Pareto tail modeling. A simulation study is carried out to compare the performance of three types of boxplot in the detection of extreme outliers for Pareto data, including standard boxplot, adjusted boxplot and generalized boxplot. It is found that the generalized boxplot is the best method for determining extreme outliers for Pareto distributed data. For the application, the generalized boxplot is utilized for determining the exreme outliers in the upper tail of Malaysian income distribution. In addition, for this data set, the confidence interval method is applied for examining the presence of dragon-kings, extreme outliers which are beyond the Pareto or power-laws distribution.

Suggested Citation

  • Muhammad Aslam Mohd Safari & Nurulkamal Masseran & Kamarulzaman Ibrahim, 2019. "On the identification of extreme outliers and dragon-kings mechanisms in the upper tail of income distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(10), pages 1886-1902, July.
  • Handle: RePEc:taf:japsta:v:46:y:2019:i:10:p:1886-1902
    DOI: 10.1080/02664763.2019.1566447
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2019.1566447
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2019.1566447?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Safari, Muhammad Aslam Mohd & Masseran, Nurulkamal & Ibrahim, Kamarulzaman & AL-Dhurafi, Nasr Ahmed, 2020. "The power-law distribution for the income of poor households," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    2. Nurulkamal Masseran, 2022. "Power-law behaviors of the severity levels of unhealthy air pollution events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1749-1766, June.
    3. Muhammad Hilmi Abdul Majid & Kamarulzaman Ibrahim & Nurulkamal Masseran, 2023. "Three-Part Composite Pareto Modelling for Income Distribution in Malaysia," Mathematics, MDPI, vol. 11(13), pages 1-15, June.
    4. Safari, Muhammad Aslam Mohd & Masseran, Nurulkamal & Ibrahim, Kamarulzaman & Hussain, Saiful Izzuan, 2021. "Measuring income inequality: A robust semi-parametric approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:46:y:2019:i:10:p:1886-1902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.