IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v110y2022i3d10.1007_s11069-021-05002-2.html
   My bibliography  Save this article

Surrogate modeling of time-dependent metocean conditions during hurricanes

Author

Listed:
  • C. Qiao

    (Northeastern University)

  • A. T. Myers

    (Northeastern University)

Abstract

Metocean conditions during hurricanes are defined by multiple parameters (e.g., significant wave height and surge height) that vary in time with significant auto- and cross-correlation. In many cases, the nature of the variation of these characteristics in time is important to design and assess the risk to offshore structures, but a persistent problem is that measurements are sparse and time history simulations using metocean models are computationally onerous. Surrogate modeling is an appealing approach to ease the computational burden of metocean modeling; however, modeling the time-dependency of metocean conditions using surrogate models is challenging because the conditions at one time instant are dependent on not only the conditions at that instant but also on the conditions at previous time instances. In this paper, time-dependent surrogate modeling of significant wave height, peak wave period, peak wave direction, and storm surge is explored using a database of metocean conditions at an offshore site. Three types of surrogate models, including Kriging, multilayer perceptron (MLP), and recurrent neural network with gated recurrent unit (RNN-GRU), are evaluated, with two different time-dependent structures considered for the Kriging model and two training set sizes for the MLP model, resulting in a total of five models evaluated in this paper. The performance of the models is compared in terms of accuracy and sensitivity toward hyperparameters, and the MLP and RNN-GRU models are demonstrated to have extraordinary prediction performance in this context.

Suggested Citation

  • C. Qiao & A. T. Myers, 2022. "Surrogate modeling of time-dependent metocean conditions during hurricanes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1545-1563, February.
  • Handle: RePEc:spr:nathaz:v:110:y:2022:i:3:d:10.1007_s11069-021-05002-2
    DOI: 10.1007/s11069-021-05002-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-05002-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-05002-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gaofeng Jia & Alexandros A. Taflanidis & Norberto C. Nadal-Caraballo & Jeffrey A. Melby & Andrew B. Kennedy & Jane M. Smith, 2016. "Surrogate modeling for peak or time-dependent storm surge prediction over an extended coastal region using an existing database of synthetic storms," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 909-938, March.
    2. Gaofeng Jia & Alexandros Taflanidis & Norberto Nadal-Caraballo & Jeffrey Melby & Andrew Kennedy & Jane Smith, 2016. "Surrogate modeling for peak or time-dependent storm surge prediction over an extended coastal region using an existing database of synthetic storms," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 909-938, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. WoongHee Jung & Aikaterini P. Kyprioti & Ehsan Adeli & Alexandros A. Taflanidis, 2023. "Exploring the sensitivity of probabilistic surge estimates to forecast errors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1371-1409, January.
    2. Aikaterini P. Kyprioti & Alexandros A. Taflanidis & Norberto C. Nadal-Caraballo & Madison O. Campbell, 2021. "Incorporation of sea level rise in storm surge surrogate modeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 531-563, January.
    3. Jung, WoongHee & Taflanidis, Alexandros A. & Kyprioti, Aikaterini P. & Zhang, Jize, 2024. "Adaptive multi-fidelity Monte Carlo for real-time probabilistic storm surge predictions," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    4. Aikaterini P. Kyprioti & Alexandros A. Taflanidis & Matthew Plumlee & Taylor G. Asher & Elaine Spiller & Richard A. Luettich & Brian Blanton & Tracy L. Kijewski-Correa & Andrew Kennedy & Lauren Schmie, 2021. "Improvements in storm surge surrogate modeling for synthetic storm parameterization, node condition classification and implementation to small size databases," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1349-1386, November.
    5. Zhenqiang Wang & Gaofeng Jia, 2021. "A novel agent-based model for tsunami evacuation simulation and risk assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 2045-2071, January.
    6. Kun Yang & Vladimir Paramygin & Y. Peter Sheng, 2019. "An objective and efficient method for estimating probabilistic coastal inundation hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 1105-1130, November.
    7. Li, Min & Wang, Ruo-Qian & Jia, Gaofeng, 2020. "Efficient dimension reduction and surrogate-based sensitivity analysis for expensive models with high-dimensional outputs," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    8. Shi Xianwu & Han Ziqiang & Fang Jiayi & Tan Jun & Guo Zhixing & Sun Zhilin, 2020. "Assessment and zonation of storm surge hazards in the coastal areas of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(1), pages 39-48, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:110:y:2022:i:3:d:10.1007_s11069-021-05002-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.