IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v109y2021i1d10.1007_s11069-021-04845-z.html
   My bibliography  Save this article

Identifying oceanographic conditions conducive to coastal impacts on temperate open coastal beaches

Author

Listed:
  • Chloe Leach

    (The University of Melbourne)

  • Ben S. Hague

    (Bureau of Meteorology
    Monash University)

  • David M. Kennedy

    (The University of Melbourne)

  • Rafael C. Carvalho

    (Deakin University)

  • Daniel Ierodiaconou

    (Deakin University)

Abstract

Warnings issued by meteorological or oceanographic agencies are a common means of allowing people to prepare for likely impactful events. Quantifying the relationships between ocean conditions and coastal impacts, such as shoreline change or flooding of coastal assets (e.g. flooded access points, overtopping of sea walls) is crucial for developing operational coastal hazard warnings. Existing studies have largely omitted empirical data, relying on modelling to estimate total water levels and impact potentials. It is well documented that site-specific conditions influence local morphodynamics and as such, detailed data related to the physical environment is a necessary component of these existing approaches. The capacity to collect these data is not always available, however, and so an alternative approach that does no rely on detailed modelling may be necessary in some instances to identify the conditions that lead to coastal impacts. We propose an alternative empirically based approach for isolating oceanic conditions that are conducive to impact along open coasts, using two case studies from Victoria, southeast Australia: Port Fairy and Inverloch. Oceanic conditions were defined using data obtained from a WAVEWATCH III (WW3) model hindcast, assessed against newly installed wave buoys, which evidenced variation in mean conditions between the two sites. We coupled impact-based data derived from citizen-science and social media to modelled and observational data, to identify the oceanic conditions that led to impacts. We found heterogeneity in the response of the case study locations to deviations from the local mean wave characteristics and still water levels. This paper demonstrates an approach through which impact-based thresholds for erosion could be developed for management applications and early warning systems.

Suggested Citation

  • Chloe Leach & Ben S. Hague & David M. Kennedy & Rafael C. Carvalho & Daniel Ierodiaconou, 2021. "Identifying oceanographic conditions conducive to coastal impacts on temperate open coastal beaches," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 499-521, October.
  • Handle: RePEc:spr:nathaz:v:109:y:2021:i:1:d:10.1007_s11069-021-04845-z
    DOI: 10.1007/s11069-021-04845-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-04845-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-04845-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kathleen L. McInnes & Christopher J. White & Ivan D. Haigh & Mark A. Hemer & Ron K. Hoeke & Neil J. Holbrook & Anthony S. Kiem & Eric C. J. Oliver & Roshanka Ranasinghe & Kevin J. E. Walsh & Seth West, 2016. "Natural hazards in Australia: sea level and coastal extremes," Climatic Change, Springer, vol. 139(1), pages 69-83, November.
    2. Joao Morim & Mark Hemer & Xiaolan L. Wang & Nick Cartwright & Claire Trenham & Alvaro Semedo & Ian Young & Lucy Bricheno & Paula Camus & Mercè Casas-Prat & Li Erikson & Lorenzo Mentaschi & Nobuhito Mo, 2019. "Robustness and uncertainties in global multivariate wind-wave climate projections," Nature Climate Change, Nature, vol. 9(9), pages 711-718, September.
    3. Hughes, Michael G. & Heap, Andrew D., 2010. "National-scale wave energy resource assessment for Australia," Renewable Energy, Elsevier, vol. 35(8), pages 1783-1791.
    4. M. M. Yagoub & Aishah A. Alsereidi & Elfadil A. Mohamed & Punitha Periyasamy & Reem Alameri & Salama Aldarmaki & Yaqein Alhashmi, 2020. "Newspapers as a validation proxy for GIS modeling in Fujairah, United Arab Emirates: identifying flood-prone areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 111-141, October.
    5. Frances C. Moore & Nick Obradovich, 2020. "Using remarkability to define coastal flooding thresholds," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Jin & Meucci, Alberto & Liu, Qingxiang & Babanin, Alexander V. & Ierodiaconou, Daniel & Xu, Xingkun & Young, Ian R., 2023. "A high-resolution wave energy assessment of south-east Australia based on a 40-year hindcast," Renewable Energy, Elsevier, vol. 215(C).
    2. Yang, Zhaoqing & García Medina, Gabriel & Neary, Vincent S. & Ahn, Seongho & Kilcher, Levi & Bharath, Aidan, 2023. "Multi-decade high-resolution regional hindcasts for wave energy resource characterization in U.S. coastal waters," Renewable Energy, Elsevier, vol. 212(C), pages 803-817.
    3. Hammar, Linus & Ehnberg, Jimmy & Mavume, Alberto & Cuamba, Boaventura C. & Molander, Sverker, 2012. "Renewable ocean energy in the Western Indian Ocean," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4938-4950.
    4. Cuttler, Michael V.W. & Hansen, Jeff E. & Lowe, Ryan J., 2020. "Seasonal and interannual variability of the wave climate at a wave energy hotspot off the southwestern coast of Australia," Renewable Energy, Elsevier, vol. 146(C), pages 2337-2350.
    5. Frankie St. Amand & Daniel H. Sandweiss & Alice R. Kelley, 2020. "Climate-driven migration: prioritizing cultural resources threatened by secondary impacts of climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1761-1781, September.
    6. Wang, Zhifeng & Dong, Sheng & Li, Xue & Guedes Soares, C., 2016. "Assessments of wave energy in the Bohai Sea, China," Renewable Energy, Elsevier, vol. 90(C), pages 145-156.
    7. Mustapa, M.A. & Yaakob, O.B. & Ahmed, Yasser M. & Rheem, Chang-Kyu & Koh, K.K. & Adnan, Faizul Amri, 2017. "Wave energy device and breakwater integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 43-58.
    8. Ben S. Hague & Andy J. Taylor, 2021. "Tide-only inundation: a metric to quantify the contribution of tides to coastal inundation under sea-level rise," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 675-695, May.
    9. Pasquale Contestabile & Vincenzo Ferrante & Diego Vicinanza, 2015. "Wave Energy Resource along the Coast of Santa Catarina (Brazil)," Energies, MDPI, vol. 8(12), pages 1-25, December.
    10. Behrens, Sam & Hayward, Jennifer & Hemer, Mark & Osman, Peter, 2012. "Assessing the wave energy converter potential for Australian coastal regions," Renewable Energy, Elsevier, vol. 43(C), pages 210-217.
    11. García-Medina, Gabriel & Özkan-Haller, H. Tuba & Ruggiero, Peter, 2014. "Wave resource assessment in Oregon and southwest Washington, USA," Renewable Energy, Elsevier, vol. 64(C), pages 203-214.
    12. Soomere, Tarmo & Eelsalu, Maris, 2014. "On the wave energy potential along the eastern Baltic Sea coast," Renewable Energy, Elsevier, vol. 71(C), pages 221-233.
    13. Laslett, Dean & Carter, Craig & Creagh, Chris & Jennings, Philip, 2017. "A large-scale renewable electricity supply system by 2030: Solar, wind, energy efficiency, storage and inertia for the South West Interconnected System (SWIS) in Western Australia," Renewable Energy, Elsevier, vol. 113(C), pages 713-731.
    14. Liu, Jin & Li, Rui & Li, Shuo & Meucci, Alberto & Young, Ian R., 2024. "Increasing wave power due to global climate change and intensification of Antarctic Oscillation," Applied Energy, Elsevier, vol. 358(C).
    15. Kamranzad, Bahareh & Lin, Pengzhi, 2020. "Sustainability of wave energy resources in the South China Sea based on five decades of changing climate," Energy, Elsevier, vol. 210(C).
    16. Egidijus Kasiulis & Jens Peter Kofoed & Arvydas Povilaitis & Algirdas Radzevičius, 2017. "Spatial Distribution of the Baltic Sea Near-Shore Wave Power Potential along the Coast of Klaipėda, Lithuania," Energies, MDPI, vol. 10(12), pages 1-18, December.
    17. Wanan Sheng & Hui Li & Jimmy Murphy, 2017. "An Improved Method for Energy and Resource Assessment of Waves in Finite Water Depths," Energies, MDPI, vol. 10(8), pages 1-17, August.
    18. Neill, Simon P. & Hashemi, M. Reza, 2013. "Wave power variability over the northwest European shelf seas," Applied Energy, Elsevier, vol. 106(C), pages 31-46.
    19. Zhang, Haicheng & Xu, Daolin & Zhao, Huai & Xia, Shuyan & Wu, Yousheng, 2018. "Energy extraction of wave energy converters embedded in a very large modularized floating platform," Energy, Elsevier, vol. 158(C), pages 317-329.
    20. Pasquale Contestabile & Enrico Di Lauro & Paolo Galli & Cesare Corselli & Diego Vicinanza, 2017. "Offshore Wind and Wave Energy Assessment around Malè and Magoodhoo Island (Maldives)," Sustainability, MDPI, vol. 9(4), pages 1-24, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:109:y:2021:i:1:d:10.1007_s11069-021-04845-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.