IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v107y2021i2d10.1007_s11069-021-04626-8.html
   My bibliography  Save this article

Landslides along the Lago Maggiore western coast (northern Italy): intense rainfall as trigger or concomitant cause?

Author

Listed:
  • M. Ciampittiello

    (National Research Council (CNR IRSA))

  • H. Saidi

    (National Research Council (CNR IRSA))

  • C. Dresti

    (National Research Council (CNR IRSA))

  • M. Coluccino

    (Assetto Idrogeologico Cartografico (GIS))

  • L. Turconi

    (National Research Council (CNR IRPI))

  • W. W. Little

    (Brigham Young University-Idaho)

  • F. Luino

    (National Research Council (CNR IRPI))

Abstract

The Lago Maggiore catchment is characterized by medium to high altitude (up to 4633 m a.s.l. with a median of 1270 m a.s.l.), high precipitation (~ 1700 mm/yr), and brittle tectonic deformation of impermeable rocks, such as granite and gneiss, that are characterized by a predisposition to slope failure. We analysed daily rainfall data associated with 38 landslides that occurred between 1980 and 2017 from meteorological stations placed into four sub-basins. The purpose was to determine whether or not extreme rainfall events exceeded landslides thresholds reported by previous studies. A statistical analysis using the RClimDex package was done, to verify changes in extreme rainfall over time. A spatial approach using Inverse Distance Weighting (IDW) in QGIS was used to extrapolate rainfall data specific to landslide areas, as well as GIS techniques and processing tools to conduct geomorphic analyses. Finally, a multivariate analysis, (general linear model), was used to understand associations between variables (landslide types, lithology, valley, elevation, slope, land use, rainfall, and the presence of rivers, roads, paths, and buildings), known to affect the generation of landslides. Results show extreme rainfall events to be a secondary factor in the triggering of landslides, whereas the most significant factors are presence of building, proximity to rivers and lithology. It was found that intense rainfall is a concomitant cause to landslides in some instances but does not play a role in others.

Suggested Citation

  • M. Ciampittiello & H. Saidi & C. Dresti & M. Coluccino & L. Turconi & W. W. Little & F. Luino, 2021. "Landslides along the Lago Maggiore western coast (northern Italy): intense rainfall as trigger or concomitant cause?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1225-1250, June.
  • Handle: RePEc:spr:nathaz:v:107:y:2021:i:2:d:10.1007_s11069-021-04626-8
    DOI: 10.1007/s11069-021-04626-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-04626-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-04626-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arnab Hazra & Brian J. Reich & Ana‐Maria Staicu, 2020. "A multivariate spatial skew‐t process for joint modeling of extreme precipitation indexes," Environmetrics, John Wiley & Sons, Ltd., vol. 31(3), May.
    2. Helmi Saidi & Marzia Ciampittiello & Claudia Dresti & Giorgio Ghiglieri, 2015. "Assessment of Trends in Extreme Precipitation Events: A Case Study in Piedmont (North-West Italy)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(1), pages 63-80, January.
    3. Bhagawat Rimal & Lifu Zhang & Hamidreza Keshtkar & Xuejian Sun & Sushila Rijal, 2018. "Quantifying the Spatiotemporal Pattern of Urban Expansion and Hazard and Risk Area Identification in the Kaski District of Nepal," Land, MDPI, vol. 7(1), pages 1-22, March.
    4. Darshan Anil Sansare & Sumedh Yamaji Mhaske, 2020. "Natural hazard assessment and mapping using remote sensing and QGIS tools for Mumbai city, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(3), pages 1117-1136, February.
    5. Ricardo Trigo & José L. Zêzere & Maria Rodrigues & Isabel Trigo, 2005. "The Influence of the North Atlantic Oscillation on Rainfall Triggering of Landslides near Lisbon," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 36(3), pages 331-354, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nazifa Rafa & Samiha Nuzhat & Sayed Mohammad Nazim Uddin & Mukesh Gupta & Rahul Rakshit, 2021. "Ecotourism as a Forest Conservation Tool: An NDVI Analysis of the Sitakunda Botanical Garden and Ecopark in Chattogram, Bangladesh," Sustainability, MDPI, vol. 13(21), pages 1-22, November.
    2. Peng Jiang & Zhongbo Yu & Mahesh R. Gautam & Kumud Acharya, 2016. "The Spatiotemporal Characteristics of Extreme Precipitation Events in the Western United States," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4807-4821, October.
    3. Hemant Singh Pokhariya & D. P. Singh & Rishi Prakash, 2022. "Investigating the impacts of urbanization on different land cover classes and land surface temperature using GIS and RS techniques," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 961-969, June.
    4. Sushila Rijal & Bhagawat Rimal & Sean Sloan, 2018. "Flood Hazard Mapping of a Rapidly Urbanizing City in the Foothills (Birendranagar, Surkhet) of Nepal," Land, MDPI, vol. 7(2), pages 1-13, May.
    5. Azzalini, Adelchi, 2022. "An overview on the progeny of the skew-normal family— A personal perspective," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    6. Raju Rai & Yili Zhang & Basanta Paudel & Bipin Kumar Acharya & Laxmi Basnet, 2018. "Land Use and Land Cover Dynamics and Assessing the Ecosystem Service Values in the Trans-Boundary Gandaki River Basin, Central Himalayas," Sustainability, MDPI, vol. 10(9), pages 1-22, August.
    7. Pennan Chinnasamy & Aashni Parikh, 2021. "Remote sensing-based assessment of Coastal Regulation Zones in India: a case study of Mumbai, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7931-7950, May.
    8. Yao-Ming Hong & Shiuan Wan, 2011. "Forecasting groundwater level fluctuations for rainfall-induced landslide," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 57(2), pages 167-184, May.
    9. Ruci Wang & Ahmed Derdouri & Yuji Murayama, 2018. "Spatiotemporal Simulation of Future Land Use/Cover Change Scenarios in the Tokyo Metropolitan Area," Sustainability, MDPI, vol. 10(6), pages 1-18, June.
    10. Chengjie Yang & Ruren Li & Zongyao Sha, 2020. "Exploring the Dynamics of Urban Greenness Space and Their Driving Factors Using Geographically Weighted Regression: A Case Study in Wuhan Metropolis, China," Land, MDPI, vol. 9(12), pages 1-21, December.
    11. Miranda J. Fix & Daniel S. Cooley & Emeric Thibaud, 2021. "Simultaneous autoregressive models for spatial extremes," Environmetrics, John Wiley & Sons, Ltd., vol. 32(2), March.
    12. Ehsan Foroumandi & Vahid Nourani & Dominika Dąbrowska & Sameh Ahmed Kantoush, 2022. "Linking Spatial–Temporal Changes of Vegetation Cover with Hydroclimatological Variables in Terrestrial Environments with a Focus on the Lake Urmia Basin," Land, MDPI, vol. 11(1), pages 1-28, January.
    13. Shukui Tan & Bin Tong & Junwen Zhang, 2023. "How Did the Land Contract Disputes Evolve? Evidence from the Yangtze River Economic Belt, China," Land, MDPI, vol. 12(7), pages 1-18, July.
    14. Brook T. Russell & Whitney K. Huang, 2021. "Modeling short‐ranged dependence in block extrema with application to polar temperature data," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.
    15. Muhammet Yılmaz & Fatih Tosunoğlu, 2023. "Assessing the main drivers of low flow series in Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(3), pages 1927-1953, February.
    16. Bhagawat Rimal & Lifu Zhang & Nigel Stork & Sean Sloan & Sushila Rijal, 2018. "Urban Expansion Occurred at the Expense of Agricultural Lands in the Tarai Region of Nepal from 1989 to 2016," Sustainability, MDPI, vol. 10(5), pages 1-19, April.
    17. George D. Bathrellos & Hariklia D. Skilodimou, 2019. "Land Use Planning for Natural Hazards," Land, MDPI, vol. 8(9), pages 1-4, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:107:y:2021:i:2:d:10.1007_s11069-021-04626-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.