IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v103y2020i1d10.1007_s11069-020-04015-7.html
   My bibliography  Save this article

Best optimizer selection for predicting bushfire occurrences using deep learning

Author

Listed:
  • Malka N. Halgamuge

    (The University of Melbourne)

  • Eshan Daminda

    (The University of Melbourne)

  • Ampalavanapillai Nirmalathas

    (The University of Melbourne)

Abstract

Natural disasters like bushfires pose a catastrophic threat to the Australia and the world’s territorial areas. This fire spreads in a wide area within seconds, and therefore, it is complicated and challenging to mitigate. To minimize risk and increase resilience, identifying bushfire occurrences beforehand and takes necessary actions is critically important. This study focuses on using deep learning technology for predicting bushfire occurrences using real weather data in any given location. Real-time and off-line weather data was collected using Weather Underground API, from 2012 to 2017 ( $$N= 128{,}329$$ N = 128 , 329 ). The obtained weather data are temperature, dew point, pressure, wind speed, wind direction, humidity, and daily rain. An algorithm was developed to collect this data automatically from any destination. Six different optimizer models were analyzed that use in deep learning technology. Then, the comparison was carried out to identify the best model. Selecting an optimizer for training the neural network, in this case, deep learning is a challenging task. Six best optimizers were chosen to compare and identify the best optimizer to estimate potential fire occurrences in given locations. The six optimizers; Adagrad, Adadelta, RMSprop, Adam, Nadam, and SGD were compared based on their processing time, prediction accuracy and error. Our findings suggest Adagrad optimizer provides less prediction time which is a critical factor for fast-spreading bushfires. Our work provides a data collection model for disaster prediction, which could be utilized to collect climatic characteristics and topographical characteristics in with larger samples. The developed methodology could be utilized as a natural disaster prediction model for precise predictions with less error and processing time using real-time data. This study provides an enhanced understanding of finding the locations that fire starts or spot fires which are more likely to occur, and lead to identifying of fire starts that are more likely to spread. Graphic abstract

Suggested Citation

  • Malka N. Halgamuge & Eshan Daminda & Ampalavanapillai Nirmalathas, 2020. "Best optimizer selection for predicting bushfire occurrences using deep learning," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 845-860, August.
  • Handle: RePEc:spr:nathaz:v:103:y:2020:i:1:d:10.1007_s11069-020-04015-7
    DOI: 10.1007/s11069-020-04015-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-020-04015-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-020-04015-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Siquan Yang & Haixia He & Weitao Chen & Lizhe Wang, 2018. "Direct tangible damage assessment for regional snowmelt flood disasters with HJ-1 and HR satellite images: a case study of the Altay region, northern Xinjiang, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(3), pages 1099-1116, December.
    2. NESTEROV, Yurii, 2012. "Efficiency of coordinate descent methods on huge-scale optimization problems," LIDAM Reprints CORE 2511, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taorong Jia & Lixiao Yao & Guoqing Yang & Qi He, 2022. "A Short-Term Power Load Forecasting Method of Based on the CEEMDAN-MVO-GRU," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
    2. Senthil Kumar Jagatheesaperumal & Khan Muhammad & Abdul Khader Jilani Saudagar & Joel J. P. C. Rodrigues, 2023. "Automated Fire Extinguishing System Using a Deep Learning Based Framework," Mathematics, MDPI, vol. 11(3), pages 1-18, January.
    3. Fan, Yuchen & Liu, Xin & Zhang, Chaoqun & Li, Chi & Li, Xinying & Wang, Heyang, 2024. "Dynamic prediction of boiler NOx emission with graph convolutional gated recurrent unit model optimized by genetic algorithm," Energy, Elsevier, vol. 294(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. TAYLOR, Adrien B. & HENDRICKX, Julien M. & François GLINEUR, 2016. "Exact worst-case performance of first-order methods for composite convex optimization," LIDAM Discussion Papers CORE 2016052, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Andrej Čopar & Blaž Zupan & Marinka Zitnik, 2019. "Fast optimization of non-negative matrix tri-factorization," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-15, June.
    3. David Degras, 2021. "Sparse group fused lasso for model segmentation: a hybrid approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 625-671, September.
    4. Masoud Ahookhosh & Le Thi Khanh Hien & Nicolas Gillis & Panagiotis Patrinos, 2021. "A Block Inertial Bregman Proximal Algorithm for Nonsmooth Nonconvex Problems with Application to Symmetric Nonnegative Matrix Tri-Factorization," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 234-258, July.
    5. Ion Necoara & Yurii Nesterov & François Glineur, 2017. "Random Block Coordinate Descent Methods for Linearly Constrained Optimization over Networks," Journal of Optimization Theory and Applications, Springer, vol. 173(1), pages 227-254, April.
    6. Sjur Didrik Flåm, 2020. "Emergence of price-taking Behavior," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 70(3), pages 847-870, October.
    7. Chenxi Chen & Yunmei Chen & Yuyuan Ouyang & Eduardo Pasiliao, 2018. "Stochastic Accelerated Alternating Direction Method of Multipliers with Importance Sampling," Journal of Optimization Theory and Applications, Springer, vol. 179(2), pages 676-695, November.
    8. Reza Eghbali & Maryam Fazel, 2017. "Decomposable norm minimization with proximal-gradient homotopy algorithm," Computational Optimization and Applications, Springer, vol. 66(2), pages 345-381, March.
    9. Jin Zhang & Xide Zhu, 2022. "Linear Convergence of Prox-SVRG Method for Separable Non-smooth Convex Optimization Problems under Bounded Metric Subregularity," Journal of Optimization Theory and Applications, Springer, vol. 192(2), pages 564-597, February.
    10. ARAVENA, Ignacio & PAPAVASILIOU, Anthony, 2016. "An Asynchronous Distributed Algorithm for solving Stochastic Unit Commitment," LIDAM Discussion Papers CORE 2016038, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    11. V. S. Amaral & R. Andreani & E. G. Birgin & D. S. Marcondes & J. M. Martínez, 2022. "On complexity and convergence of high-order coordinate descent algorithms for smooth nonconvex box-constrained minimization," Journal of Global Optimization, Springer, vol. 84(3), pages 527-561, November.
    12. Ron Shefi & Marc Teboulle, 2016. "On the rate of convergence of the proximal alternating linearized minimization algorithm for convex problems," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(1), pages 27-46, February.
    13. Mareček, Jakub & Richtárik, Peter & Takáč, Martin, 2017. "Matrix completion under interval uncertainty," European Journal of Operational Research, Elsevier, vol. 256(1), pages 35-43.
    14. Masoud Ahookhosh & Le Thi Khanh Hien & Nicolas Gillis & Panagiotis Patrinos, 2021. "Multi-block Bregman proximal alternating linearized minimization and its application to orthogonal nonnegative matrix factorization," Computational Optimization and Applications, Springer, vol. 79(3), pages 681-715, July.
    15. Yen, Yu-Min & Yen, Tso-Jung, 2014. "Solving norm constrained portfolio optimization via coordinate-wise descent algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 737-759.
    16. Tao Sun & Yuejiao Sun & Yangyang Xu & Wotao Yin, 2020. "Markov chain block coordinate descent," Computational Optimization and Applications, Springer, vol. 75(1), pages 35-61, January.
    17. Yangyang Xu & Shuzhong Zhang, 2018. "Accelerated primal–dual proximal block coordinate updating methods for constrained convex optimization," Computational Optimization and Applications, Springer, vol. 70(1), pages 91-128, May.
    18. Jinlong Lei & Uday V. Shanbhag, 2020. "Asynchronous Schemes for Stochastic and Misspecified Potential Games and Nonconvex Optimization," Operations Research, INFORMS, vol. 68(6), pages 1742-1766, November.
    19. Khan, Mohd Shariq & I.A. Karimi, & Bahadori, Alireza & Lee, Moonyong, 2015. "Sequential coordinate random search for optimal operation of LNG (liquefied natural gas) plant," Energy, Elsevier, vol. 89(C), pages 757-767.
    20. Elson Tomás & Susana Vinga & Alexandra M. Carvalho, 2017. "Unsupervised learning of pharmacokinetic responses," Computational Statistics, Springer, vol. 32(2), pages 409-428, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:103:y:2020:i:1:d:10.1007_s11069-020-04015-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.