IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v101y2020i2d10.1007_s11069-020-03874-4.html
   My bibliography  Save this article

Earthquake and post-earthquake vulnerability assessment of urban gas pipelines network

Author

Listed:
  • Saeideh Farahani

    (Amirkabir University of Technology)

  • Ahmad Tahershamsi

    (Amirkabir University of Technology)

  • Behrouz Behnam

    (Amirkabir University of Technology)

Abstract

Urban gas pipelines network as one of the most vital lifelines plays an important role in the level of vulnerability and earthquake damage. Iran is located on the Alpide earthquake belt, which is one of the highly earthquake-prone zones of the world. The first earthquake effect, which can damage pipelines, is the transient ground deformation caused by wave propagation. The second one is the permanent ground deformation, which refers to liquefaction, landslide, and ground failure. With the failure of the gas pipelines, a fire may also occur, and consequently, the indirect damage caused by the earthquake may even further increase. This paper investigates the seismic risk of the Asaluyeh city urban gas distribution network by regarding the all geo-seismic hazard using HAZUS methodology. The post-earthquake ignition is evaluated using fault tree method, and the consequences of the design earthquake are assessed using PHAST package. Finally, the network physical damage risk, human risk, and direct economic risk are all evaluated. The results show that three possible failures may happen in the Asaluyeh gas distribution network. While the probability of an ignition occurrence is 35% for leakage and 32% for breaking, the post-earthquake ignition can affect around 30 people.

Suggested Citation

  • Saeideh Farahani & Ahmad Tahershamsi & Behrouz Behnam, 2020. "Earthquake and post-earthquake vulnerability assessment of urban gas pipelines network," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(2), pages 327-347, March.
  • Handle: RePEc:spr:nathaz:v:101:y:2020:i:2:d:10.1007_s11069-020-03874-4
    DOI: 10.1007/s11069-020-03874-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-020-03874-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-020-03874-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mehdi Mousavi & Mostafa Hesari & Alireza Azarbakht, 2014. "Seismic risk assessment of the 3rd Azerbaijan gas pipeline in Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1327-1348, December.
    2. Selcuk Toprak & Filiz Taskin, 2007. "Estimation of Earthquake Damage to Buried Pipelines Caused by Ground Shaking," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 40(1), pages 1-24, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qi Tong & Thomas Gernay, 2022. "A hierarchical Bayesian model for predicting fire ignitions after an earthquake with application to California," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1637-1660, March.
    2. Qing Deng & Kuo Wang & Jiahao Wu & Feng Yu & Huiling Jiang & Lida Huang, 2023. "An integrated model for evaluating the leakage risk of urban gas pipe: a case study based on Chinese real accident data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 319-340, March.
    3. Anže Babič & Matjaž Dolšek & Jure Žižmond, 2021. "Simulating Historical Earthquakes in Existing Cities for Fostering Design of Resilient and Sustainable Communities: The Ljubljana Case," Sustainability, MDPI, vol. 13(14), pages 1-21, July.
    4. Zheng He & Negar Elhami Khorasani, 2022. "Identification and hierarchical structure of cause factors for fire following earthquake using data mining and interpretive structural modeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 947-976, May.
    5. Lihui Wu & Da Ma & Jinling Li, 2023. "Assessment of the Regional Vulnerability to Natural Disasters in China Based on DEA Model," Sustainability, MDPI, vol. 15(14), pages 1-12, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehdi Mousavi & Mostafa Hesari & Alireza Azarbakht, 2014. "Seismic risk assessment of the 3rd Azerbaijan gas pipeline in Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1327-1348, December.
    2. Mehmet Inel & Sevket Senel & Selcuk Toprak & Yasemin Manav, 2008. "Seismic risk assessment of buildings in urban areas: a case study for Denizli, Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 46(3), pages 265-285, September.
    3. A. A. Malinowska, 2017. "Fuzzy inference-based approach to the mining-induced pipeline failure estimation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(1), pages 621-636, January.
    4. Cavalieri, Francesco, 2020. "Seismic risk assessment of natural gas networks with steady-state flow computation," International Journal of Critical Infrastructure Protection, Elsevier, vol. 28(C).
    5. A. A. Malinowska, 2016. "Reliability of methods used for pipeline hazard evaluation in view of potential risk factors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 715-728, August.
    6. Milad Moradi & Mahmoud Reza Delavar & Behzad Moshiri, 2017. "A GIS-based multi-criteria analysis model for earthquake vulnerability assessment using Choquet integral and game theory," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1377-1398, July.
    7. B. Omidvar & M. Eskandari & E. Peyghaleh, 2013. "Seismic damage to urban areas due to failed buried fuel pipelines case study: fire following earthquake in the city of Kermanshah, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 169-192, June.
    8. Ali Shafiee & Mohsen Kamalian & Mohammad Jafari & Hossein Hamzehloo, 2011. "Ground motion studies for microzonation in Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(1), pages 481-505, October.
    9. Chaofeng Liu & Yawei Li & He Yin & Jiaxin Zhang & Wei Wang, 2020. "A Stochastic Interpolation-Based Fractal Model for Vulnerability Diagnosis of Water Supply Networks Against Seismic Hazards," Sustainability, MDPI, vol. 12(7), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:101:y:2020:i:2:d:10.1007_s11069-020-03874-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.