IDEAS home Printed from https://ideas.repec.org/a/spr/minecn/v37y2024i2d10.1007_s13563-024-00424-3.html
   My bibliography  Save this article

Projecting demand for mineral-based critical materials in the energy transition for electricity

Author

Listed:
  • Gabriel Collins

    (Colorado School of Mines
    Colorado School of Mines)

  • Carol A. Dahl

    (Colorado School of Mines
    Luleå University of Technology
    Colorado School of Mines)

  • Maxwell Fleming

    (Colorado School of Mines
    Colorado School of Mines)

  • Michael Tanner

    (Colorado School of Mines)

  • Wilson C. Martin

    (Colorado School of Mines)

  • Kabir Nadkarni

    (Colorado School of Mines)

  • Sara Hastings-Simon

    (Colorado School of Mines
    University of Calgary
    University of Calgary)

  • Morgan Bazilian

    (Colorado School of Mines)

Abstract

Several large scenario exercises in the last years present decarbonizing transitional energy pathways to 2050 and beyond. This changing energy landscape toward net zero is new territory to explore but is expected to be more intensive in mineral based materials than the current system. Mapping this territory and understanding the critical material needs to support the transition are essential for demanders and suppliers as well as policy makers seeking to orchestrate the transition. Our contribution is to provide such decision makers for electricity markets with a transparent tool that can be easily understood and modified as our transitional knowledge improves. In this tool, we take the International Energy Agency’s conservative Beyond Two Degrees scenario, which projects renewable energy penetration for 15 electricity technologies, supplemented by Bloomberg’s Electrical Vehicle Outlook. Coupling these electricity projections with estimates of material use per GW of new capacity, we estimate resulting needs for 33 materials through 2050. Assuming constant material intensities and recycle rates, our model finds dramatic increases in most included materials from 2021 to 2050. The total projected tonnage increases in materials used for the transition is 294% with a compounded average annual growth rate of 4.8%. However, there is wide heterogeneity across materials (from slightly negative for tungsten to nearly 1300% for lithium). Projected 2050 sales vary from less than 30 tonnes for hafnium and yttrium (with quantity demanded growth of − 4.8% from 2021 to 2050) to more than 17 million tonnes for steel (with growth of 291%) and aluminum (growth 419%). At 2021 prices, 2050 sales revenue varies from less than a million dollars for boron (growth of 164%) to more than $42 billion for aluminum (growth 419%), nickel (growth of 279%), and steel (growth of 291%).

Suggested Citation

  • Gabriel Collins & Carol A. Dahl & Maxwell Fleming & Michael Tanner & Wilson C. Martin & Kabir Nadkarni & Sara Hastings-Simon & Morgan Bazilian, 2024. "Projecting demand for mineral-based critical materials in the energy transition for electricity," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 37(2), pages 245-263, June.
  • Handle: RePEc:spr:minecn:v:37:y:2024:i:2:d:10.1007_s13563-024-00424-3
    DOI: 10.1007/s13563-024-00424-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13563-024-00424-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13563-024-00424-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yaksic, Andrés & Tilton, John E., 2009. "Using the cumulative availability curve to assess the threat of mineral depletion: The case of lithium," Resources Policy, Elsevier, vol. 34(4), pages 185-194, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hache, Emmanuel & Seck, Gondia Sokhna & Simoen, Marine & Bonnet, Clément & Carcanague, Samuel, 2019. "Critical raw materials and transportation sector electrification: A detailed bottom-up analysis in world transport," Applied Energy, Elsevier, vol. 240(C), pages 6-25.
    2. Karan Bhuwalka & Randolph E. Kirchain & Elsa A. Olivetti & Richard Roth, 2023. "Quantifying the drivers of long‐term prices in materials supply chains," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 141-154, February.
    3. Richa, Kirti & Babbitt, Callie W. & Gaustad, Gabrielle & Wang, Xue, 2014. "A future perspective on lithium-ion battery waste flows from electric vehicles," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 63-76.
    4. Philip Maxwell & Mauricio Mora, 2020. "Lithium and Chile: looking back and looking forward," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 33(1), pages 57-71, July.
    5. Fernando Moreno-Brieva & Carlos Merino, 2020. "African international trade in the global value chain of lithium batteries," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(6), pages 1031-1052, August.
    6. Kushnir, Duncan & Sandén, Björn A., 2012. "The time dimension and lithium resource constraints for electric vehicles," Resources Policy, Elsevier, vol. 37(1), pages 93-103.
    7. Gil-Alana, Luis A. & Monge, Manuel, 2019. "Lithium: Production and estimated consumption. Evidence of persistence," Resources Policy, Elsevier, vol. 60(C), pages 198-202.
    8. Söderholm, Patrik & Tilton, John E., 2012. "Material efficiency: An economic perspective," Resources, Conservation & Recycling, Elsevier, vol. 61(C), pages 75-82.
    9. Stepanek, Christian & Walter, Matthias & Rathgeber, Andreas, 2013. "Is the convenience yield a good indicator of a commodity's supply risk?," Resources Policy, Elsevier, vol. 38(3), pages 395-405.
    10. Monnet, Antoine & Gabriel, Sophie & Percebois, Jacques, 2017. "Analysis of the long-term availability of uranium: The influence of dynamic constraints and market competition," Energy Policy, Elsevier, vol. 105(C), pages 98-107.
    11. Ziemann, Saskia & Weil, Marcel & Schebek, Liselotte, 2012. "Tracing the fate of lithium––The development of a material flow model," Resources, Conservation & Recycling, Elsevier, vol. 63(C), pages 26-34.
    12. Knut Einar Rosendahl & Diana Roa Rubiano, 2019. "How Effective is Lithium Recycling as a Remedy for Resource Scarcity?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(3), pages 985-1010, November.
    13. Meshram, Pratima & Pandey, B.D. & Abhilash,, 2019. "Perspective of availability and sustainable recycling prospects of metals in rechargeable batteries – A resource overview," Resources Policy, Elsevier, vol. 60(C), pages 9-22.
    14. Juan Ignacio Guzmán & Enrique Silva, 2018. "Copper price determination: fundamentals versus non-fundamentals," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 31(3), pages 283-300, October.
    15. Miedema, Jan H. & Moll, Henri C., 2013. "Lithium availability in the EU27 for battery-driven vehicles: The impact of recycling and substitution on the confrontation between supply and demand until2050," Resources Policy, Elsevier, vol. 38(2), pages 204-211.
    16. Calvo, Guiomar & Valero, Alicia & Valero, Antonio, 2017. "Assessing maximum production peak and resource availability of non-fuel mineral resources: Analyzing the influence of extractable global resources," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 208-217.
    17. Yellishetty, Mohan & Ranjith, P.G. & Tharumarajah, A., 2010. "Iron ore and steel production trends and material flows in the world: Is this really sustainable?," Resources, Conservation & Recycling, Elsevier, vol. 54(12), pages 1084-1094.
    18. Teixeira, Bernardo & Brito, Miguel Centeno & Mateus, António, 2024. "Raw materials for the Portuguese decarbonization roadmap: The case of solar photovoltaics and wind energy," Resources Policy, Elsevier, vol. 90(C).
    19. Song, Yi & Zhang, Zhouyi & Zhang, Yijun & Cheng, Jinhua, 2022. "Technological innovation and supply of critical metals: A perspective of industrial chains," Resources Policy, Elsevier, vol. 79(C).
    20. Redlinger, Michael & Eggert, Roderick, 2016. "Volatility of by-product metal and mineral prices," Resources Policy, Elsevier, vol. 47(C), pages 69-77.

    More about this item

    Keywords

    Critical material demand; Electricity market transition; Renewable energy;
    All these keywords.

    JEL classification:

    • Q30 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - General
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:minecn:v:37:y:2024:i:2:d:10.1007_s13563-024-00424-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.