IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v34y2009i4p185-194.html
   My bibliography  Save this article

Using the cumulative availability curve to assess the threat of mineral depletion: The case of lithium

Author

Listed:
  • Yaksic, Andrés
  • Tilton, John E.

Abstract

The cumulative availability curve shows the quantities of a mineral commodity that can be recovered under current conditions from existing resources at various prices. The future availability of a mineral commodity depends on the shape of its cumulative availability curve (determined by geologic considerations, such as the nature and incidence of the available mineral deposits), the speed at which society moves up the curve (determined by future demand and the extent to which this demand is satisfied by recycling), and shifts in the curve (determined by cost-reducing technological change and other factors). While the shape of the curve for any given mineral commodity may or may not be known, it is knowable since the geologic processes responsible for the curve's shape took place many years ago. In contrast, the factors governing how fast society moves up the curve and how the curve shifts over time are not only unknown but also unknowable. Using lithium as an example, this article shows that knowledge about the shape of the cumulative availability curve can by itself provide useful insights for some mineral commodities regarding the potential future threat of shortages due to depletion. Despite the inherent uncertainties surrounding the future growth in lithium demand as well as the uncertainties regarding the future cost-reducing effects of new production technologies, the shape of the lithium cumulative availability curve indicates that depletion is not likely to pose a serious problem over the rest of this century and well beyond.

Suggested Citation

  • Yaksic, Andrés & Tilton, John E., 2009. "Using the cumulative availability curve to assess the threat of mineral depletion: The case of lithium," Resources Policy, Elsevier, vol. 34(4), pages 185-194, December.
  • Handle: RePEc:eee:jrpoli:v:34:y:2009:i:4:p:185-194
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4207(09)00034-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ebensperger, Arlene & Maxwell, Philip & Moscoso, Christian, 2005. "The lithium industry: Its recent evolution and future prospects," Resources Policy, Elsevier, vol. 30(3), pages 218-231, September.
    2. Tilton, John E. & Lagos, Gustavo, 2007. "Assessing the long-run availability of copper," Resources Policy, Elsevier, vol. 32(1-2), pages 19-23.
    3. Roberto F. Aguilera & Roderick G. Eggert & Lagos C.C. Gustavo & John E. Tilton, 2009. "Depletion and the Future Availability of Petroleum Resources," The Energy Journal, , vol. 30(1), pages 141-174, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kushnir, Duncan & Sandén, Björn A., 2012. "The time dimension and lithium resource constraints for electric vehicles," Resources Policy, Elsevier, vol. 37(1), pages 93-103.
    2. Emilio Castillo & Roderick Eggert, 2019. "Reconciling Diverging Views on Mineral Depletion: A Modified Cumulative Availability Curve Applied to Copper Resources," Working Papers 2019-02, Colorado School of Mines, Division of Economics and Business.
    3. Proost, Stef & Van Dender, Kurt, 2012. "Energy and environment challenges in the transport sector," Economics of Transportation, Elsevier, vol. 1(1), pages 77-87.
    4. Guo, Tianjiao & Geng, Yong & Song, Xiaoqian & Rui, Xue & Ge, Zewen, 2023. "Tracing magnesium flows in China: A dynamic material flow analysis," Resources Policy, Elsevier, vol. 83(C).
    5. Larona S. Teseletso & Tsuyoshi Adachi, 2022. "Long-Term Sustainability of Copper and Iron Based on a System Dynamics Model," Resources, MDPI, vol. 11(4), pages 1-19, April.
    6. Aguilera, Roberto F., 2014. "Production costs of global conventional and unconventional petroleum," Energy Policy, Elsevier, vol. 64(C), pages 134-140.
    7. Paltsev, Sergey & Jacoby, Henry D. & Reilly, John M. & Ejaz, Qudsia J. & Morris, Jennifer & O'Sullivan, Francis & Rausch, Sebastian & Winchester, Niven & Kragha, Oghenerume, 2011. "The future of U.S. natural gas production, use, and trade," Energy Policy, Elsevier, vol. 39(9), pages 5309-5321, September.
    8. Philip Maxwell & Mauricio Mora, 2020. "Lithium and Chile: looking back and looking forward," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 33(1), pages 57-71, July.
    9. Guzmán, Juan Ignacio & Karpunina, Alina & Araya, Constanza & Faúndez, Patricio & Bocchetto, Marcela & Camacho, Rodolfo & Desormeaux, Daniela & Galaz, Juanita & Garcés, Ingrid & Kracht, Willy & Lagos, , 2023. "Chile: On the road to global sustainable mining," Resources Policy, Elsevier, vol. 83(C).
    10. Fernando Moreno-Brieva & Carlos Merino, 2020. "African international trade in the global value chain of lithium batteries," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(6), pages 1031-1052, August.
    11. Okullo, Samuel J. & Reynès, Frédéric & Hofkes, Marjan W., 2015. "Modeling peak oil and the geological constraints on oil production," Resource and Energy Economics, Elsevier, vol. 40(C), pages 36-56.
    12. Daniel Huppmann and Franziska Holz, 2012. "Crude Oil Market Power—A Shift in Recent Years?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    13. Langer, Lissy & Huppmann, Daniel & Holz, Franziska, 2016. "Lifting the US crude oil export ban: A numerical partial equilibrium analysis," Energy Policy, Elsevier, vol. 97(C), pages 258-266.
    14. Gordon, R.B. & Bertram, M. & Graedel, T.E., 2007. "On the sustainability of metal supplies: A response to Tilton and Lagos," Resources Policy, Elsevier, vol. 32(1-2), pages 24-28.
    15. Schulte, Simon & Weiser, Florian, 2017. "Natural Gas Transits and Market Power - The Case of Turkey," EWI Working Papers 2017-6, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI), revised 15 Aug 2017.
    16. Chen, Wu & Wang, Minxi & Li, Xin, 2016. "Analysis of copper flows in the United States: 1975–2012," Resources, Conservation & Recycling, Elsevier, vol. 111(C), pages 67-76.
    17. Harald Ulrik Sverdrup & Anna Hulda Olafsdottir & Kristin Vala Ragnarsdottir & Deniz Koca, 2018. "A System Dynamics Assessment of the Supply of Molybdenum and Rhenium Used for Super-alloys and Specialty Steels, Using the WORLD6 Model," Biophysical Economics and Resource Quality, Springer, vol. 3(3), pages 1-43, September.
    18. Okullo, Samuel J. & Reynès, Frédéric, 2011. "Can reserve additions in mature crude oil provinces attenuate peak oil?," Energy, Elsevier, vol. 36(9), pages 5755-5764.
    19. Hans-Dieter Karl, 2010. "Estimation of Production Costs for Energy Resources," CESifo Forum, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 11(04), pages 63-71, December.
    20. Macías, Arturo & Matilla-García, Mariano, 2015. "Net energy analysis in a Ramsey–Hotelling growth model," Energy Policy, Elsevier, vol. 86(C), pages 562-573.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:34:y:2009:i:4:p:185-194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.