IDEAS home Printed from https://ideas.repec.org/a/spr/minecn/v35y2022i3d10.1007_s13563-022-00323-5.html
   My bibliography  Save this article

Trends in global mineral and metal criticality: the need for technological foresight

Author

Listed:
  • Patrice Christmann
  • Gaëtan Lefebvre

    (BRGM)

Abstract

Since the beginning of the third millennium, several trends, such as the rapid rise to global superpower status of China, with its 1.4 billion habitants; the transfer of large industrial production segments from West to East (Asia) and, more recently, of the growing political and trade tensions between the USA and China; the (re)birth of nationalisms, communitarianism and autocratic regimes; and minerals and metals industry–specific sustainability issues such as greenhouse gas emissions waste production and poor social acceptance of large-scale mining projects, are threatening the mineral and metal supplies of rich OECD countries that have depended on well-functioning free markets to supply their economies’ mineral and metal needs for the past few decades. These developments happen while demography, the growth of the global middle-class, urbanisation and, now, the need for a rapid transition to low-carbon energy production all concur to a further acceleration of the global demand for minerals and metals. This context leads governments and industries to pay much more attention to potential mineral supply/pricing issues, leading to the publication of mineral criticality studies, assessing the economic importance and supply risks related to specific minerals and metals, from the point of view of specific governments, economic sectors or industries. Some criticality assessments also propose future demand scenarios for selected minerals and metals, looking at the next decades, sometimes up to 2100. While these studies provide important information on current market conditions and issues, those looking at future supply and demand appear to insufficiently consider the probability of significant technology shifts that, if confirmed, would deeply impact on future demand scenarios. Three technology shifts that appear as highly probable (Li-metal batteries (including solid-state Li batteries); low/no neodymium-, praseodymium-, dysprosium- or terbium-containing permanent magnets; and composite matrix ceramics used in aircraft jet engines and gas turbines used for electricity and heat production) are highlighting the need to better integrate technology foresight in criticality assessments as such shifts are likely to have large impacts on the demand for some of the minerals and metals that are rated as highly critical in many studies (cobalt, dysprosium, graphite, neodymium, praseodymium, rhenium and tantalum), or for which demand scenarios are presented that may outstrip possible supply.

Suggested Citation

  • Patrice Christmann & Gaëtan Lefebvre, 2022. "Trends in global mineral and metal criticality: the need for technological foresight," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 35(3), pages 641-652, December.
  • Handle: RePEc:spr:minecn:v:35:y:2022:i:3:d:10.1007_s13563-022-00323-5
    DOI: 10.1007/s13563-022-00323-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13563-022-00323-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13563-022-00323-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Simon Glöser-Chahoud & Luis Tercero Espinoza & Rainer Walz & Martin Faulstich, 2016. "Taking the Step towards a More Dynamic View on Raw Material Criticality: An Indicator Based Analysis for Germany and Japan," Resources, MDPI, vol. 5(4), pages 1-16, December.
    2. Wang, Peng & Chen, Li-Yang & Ge, Jian-Ping & Cai, Wenjia & Chen, Wei-Qiang, 2019. "Incorporating critical material cycles into metal-energy nexus of China’s 2050 renewable transition," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    3. Patrice Christmann, 2021. "Mineral Resource Governance in the 21st Century and a sustainable European Union," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 34(2), pages 187-208, July.
    4. Elshkaki, Ayman & Shen, Lei, 2019. "Energy-material nexus: The impacts of national and international energy scenarios on critical metals use in China up to 2050 and their global implications," Energy, Elsevier, vol. 180(C), pages 903-917.
    5. Di Dong & Arnold Tukker & Ester Van der Voet, 2019. "Modeling copper demand in China up to 2050: A business‐as‐usual scenario based on dynamic stock and flow analysis," Journal of Industrial Ecology, Yale University, vol. 23(6), pages 1363-1380, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Donglei & Wenhui, Xiong & Anser, Muhammad Khalid & Nassani, Abdelmohsen A. & Imran, Muhammad & Zaman, Khalid & Haffar, Mohamed, 2023. "Navigating the global mineral market: A study of resource wealth and the energy transition," Resources Policy, Elsevier, vol. 82(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Kaipeng & Tang, Xu & Wang, Peng & Willerström, Jakob & Höök, Mikael, 2021. "Bridging energy and metal sustainability: Insights from China’s wind power development up to 2050," Energy, Elsevier, vol. 227(C).
    2. Hu, Xueyue & Wang, Chunying & Elshkaki, Ayman, 2024. "Material-energy Nexus: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    3. Liang, Yanan & Kleijn, René & Tukker, Arnold & van der Voet, Ester, 2022. "Material requirements for low-carbon energy technologies: A quantitative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    4. Le Boulzec, Hugo & Delannoy, Louis & Andrieu, Baptiste & Verzier, François & Vidal, Olivier & Mathy, Sandrine, 2022. "Dynamic modeling of global fossil fuel infrastructure and materials needs: Overcoming a lack of available data," Applied Energy, Elsevier, vol. 326(C).
    5. Teixeira, Bernardo & Brito, Miguel Centeno & Mateus, António, 2024. "Raw materials for the Portuguese decarbonization roadmap: The case of solar photovoltaics and wind energy," Resources Policy, Elsevier, vol. 90(C).
    6. Ozawa, Akito & Morimoto, Shinichirou & Hatayama, Hiroki & Anzai, Yurie, 2023. "Energy–materials nexus of electrified vehicle penetration in Japan: A study on energy transition and cobalt flow," Energy, Elsevier, vol. 277(C).
    7. Zheng, Biao & Zhang, Yuquan & Chen, Yufeng, 2021. "Asymmetric connectedness and dynamic spillovers between renewable energy and rare earth markets in China: Evidence from firms’ high-frequency data," Resources Policy, Elsevier, vol. 71(C).
    8. Ren, Kaipeng & Tang, Xu & Höök, Mikael, 2021. "Evaluating metal constraints for photovoltaics: Perspectives from China’s PV development," Applied Energy, Elsevier, vol. 282(PA).
    9. Beibei Che & Chaofeng Shao & Zhirui Lu & Binghong Qian & Sihan Chen, 2022. "Mineral Requirements for China’s Energy Transition to 2060—Focus on Electricity and Transportation," Sustainability, MDPI, vol. 15(1), pages 1-23, December.
    10. Zhang, Haoran & Li, Ruixiong & Cai, Xingrui & Zheng, Chaoyue & Liu, Laibao & Liu, Maodian & Zhang, Qianru & Lin, Huiming & Chen, Long & Wang, Xuejun, 2022. "Do electricity flows hamper regional economic–environmental equity?," Applied Energy, Elsevier, vol. 326(C).
    11. Song, Huiling & Wang, Chang & Lei, Xiaojie & Zhang, Hongwei, 2022. "Dynamic dependence between main-byproduct metals and the role of clean energy market," Energy Economics, Elsevier, vol. 108(C).
    12. Huang, Jianbai & Dong, Xuesong & Chen, Jinyu & Zeng, Anqi, 2023. "The slow-release effect of recycling on rapid demand growth of critical metals from EV batteries up to 2050: Evidence from China," Resources Policy, Elsevier, vol. 82(C).
    13. Song, Huiling & Wang, Chang & Sun, Kun & Geng, Hongjun & Zuo, Lyushui, 2023. "Material efficiency strategies across the industrial chain to secure indium availability for global carbon neutrality," Resources Policy, Elsevier, vol. 85(PB).
    14. Li, George Yunxiong & Ascani, Andrea & Iammarino, Simona, 2024. "The material basis of modern technologies. A case study on rare metals," Research Policy, Elsevier, vol. 53(1).
    15. Islam, Md. Monirul & Sohag, Kazi & Hammoudeh, Shawkat & Mariev, Oleg & Samargandi, Nahla, 2022. "Minerals import demands and clean energy transitions: A disaggregated analysis," Energy Economics, Elsevier, vol. 113(C).
    16. Zhang, Yuan & Liang, Tianyang & Yang, Ke, 2022. "An integrated energy storage system consisting of Compressed Carbon dioxide energy storage and Organic Rankine Cycle: Exergoeconomic evaluation and multi-objective optimization," Energy, Elsevier, vol. 247(C).
    17. Song, Ying & Bouri, Elie & Ghosh, Sajal & Kanjilal, Kakali, 2021. "Rare earth and financial markets: Dynamics of return and volatility connectedness around the COVID-19 outbreak," Resources Policy, Elsevier, vol. 74(C).
    18. Sarwar, Suleman & Aziz, Ghazala & Waheed, Rida & Morales, Lucía, 2024. "Forecasting the mineral resource rent through the inclusion of economy, environment and energy: Advanced machine learning and deep learning techniques," Resources Policy, Elsevier, vol. 90(C).
    19. Yang, Xiao & Anser, Muhammad Khalid & Yusop, Zulkornain & Abbas, Shujaat & Khan, Muhammad Azhar & Zaman, Khalid, 2022. "Volatility in mineral resource pricing causes ecological footprints: A cloud on the horizon," Resources Policy, Elsevier, vol. 77(C).
    20. Cole, Megan J., 2023. "ESG risks to global platinum supply: A case study of Mogalakwena Mine, South Africa," Resources Policy, Elsevier, vol. 85(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:minecn:v:35:y:2022:i:3:d:10.1007_s13563-022-00323-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.