IDEAS home Printed from https://ideas.repec.org/a/spr/metron/v79y2021i1d10.1007_s40300-021-00203-y.html
   My bibliography  Save this article

A new regression model for positive random variables with skewed and long tail

Author

Listed:
  • Marcelo Bourguignon

    (Universidade Federal do Rio Grande do Norte)

  • Manoel Santos-Neto

    (Universidade Federal de Campina Grande)

  • Mário Castro

    (Universidade de São Paulo, Instituto de Ciências Matemáticas e de Computação)

Abstract

In this paper, we propose a regression model where the response variable is beta prime distributed using a new parameterization of this distribution that is indexed by mean and precision parameters. The proposed regression model is useful for situations where the variable of interest is continuous and restricted to the positive real line and is related to other variables through the mean and precision parameters. The variance function of the proposed model has a quadratic form. In addition, the beta prime model has properties that its competitor distributions of the exponential family do not have. Estimation is performed by maximum likelihood. Furthermore, we discuss residuals and influence diagnostic tools. Finally, we also carry out an application to real data that demonstrates the usefulness of the proposed model.

Suggested Citation

  • Marcelo Bourguignon & Manoel Santos-Neto & Mário Castro, 2021. "A new regression model for positive random variables with skewed and long tail," METRON, Springer;Sapienza Università di Roma, vol. 79(1), pages 33-55, April.
  • Handle: RePEc:spr:metron:v:79:y:2021:i:1:d:10.1007_s40300-021-00203-y
    DOI: 10.1007/s40300-021-00203-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40300-021-00203-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40300-021-00203-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song Chen, 2000. "Probability Density Function Estimation Using Gamma Kernels," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 52(3), pages 471-480, September.
    2. McDonald, James B. & Butler, Richard J., 1990. "Regression models for positive random variables," Journal of Econometrics, Elsevier, vol. 43(1-2), pages 227-251.
    3. Stasinopoulos, D. Mikis & Rigby, Robert A., 2007. "Generalized Additive Models for Location Scale and Shape (GAMLSS) in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 23(i07).
    4. James B. McDonald, 2008. "Some Generalized Functions for the Size Distribution of Income," Economic Studies in Inequality, Social Exclusion, and Well-Being, in: Duangkamon Chotikapanich (ed.), Modeling Income Distributions and Lorenz Curves, chapter 3, pages 37-55, Springer.
    5. Luca Bagnato & Antonio Punzo, 2013. "Finite mixtures of unimodal beta and gamma densities and the $$k$$ -bumps algorithm," Computational Statistics, Springer, vol. 28(4), pages 1571-1597, August.
    6. Masanobu Taniguchi & Junichi Hirukawa, 2012. "Generalized information criterion," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(2), pages 287-297, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elisângela C. Biazatti & Gauss M. Cordeiro & Gabriela M. Rodrigues & Edwin M. M. Ortega & Luís H. de Santana, 2022. "A Weibull-Beta Prime Distribution to Model COVID-19 Data with the Presence of Covariates and Censored Data," Stats, MDPI, vol. 5(4), pages 1-15, November.
    2. Ahmad Abubakar Suleiman & Hanita Daud & Narinderjit Singh Sawaran Singh & Mahmod Othman & Aliyu Ismail Ishaq & Rajalingam Sokkalingam, 2023. "A Novel Odd Beta Prime-Logistic Distribution: Desirable Mathematical Properties and Applications to Engineering and Environmental Data," Sustainability, MDPI, vol. 15(13), pages 1-25, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander, Carol & Cordeiro, Gauss M. & Ortega, Edwin M.M. & Sarabia, José María, 2012. "Generalized beta-generated distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1880-1897.
    2. Erengul Dodd & George Streftaris, 2017. "Prediction of settlement delay in critical illness insurance claims by using the generalized beta of the second kind distribution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(2), pages 273-294, February.
    3. Peng Shi & Wei Zhang, 2011. "A copula regression model for estimating firm efficiency in the insurance industry," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(10), pages 2271-2287.
    4. Ouimet, Frédéric, 2021. "Asymptotic properties of Bernstein estimators on the simplex," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    5. Alexander Sohn & Nadja Klein & Thomas Kneib, 2014. "A New Semiparametric Approach to Analysing Conditional Income Distributions," SOEPpapers on Multidisciplinary Panel Data Research 676, DIW Berlin, The German Socio-Economic Panel (SOEP).
    6. Vladimir Hlasny, 2021. "Parametric representation of the top of income distributions: Options, historical evidence, and model selection," Journal of Economic Surveys, Wiley Blackwell, vol. 35(4), pages 1217-1256, September.
    7. Punzo, Antonio & Bagnato, Luca, 2021. "Modeling the cryptocurrency return distribution via Laplace scale mixtures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    8. Shi, Peng & Valdez, Emiliano A., 2011. "A copula approach to test asymmetric information with applications to predictive modeling," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 226-239, September.
    9. Sohn, Alexander & Klein, Nadja & Kneib, Thomas, 2014. "A new semiparamtetric approach to analysing Conditional Income Distributions," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100630, Verein für Socialpolitik / German Economic Association.
    10. José María Sarabia & Vanesa Jordá & Faustino Prieto & Montserrat Guillén, 2020. "Multivariate Classes of GB2 Distributions with Applications," Mathematics, MDPI, vol. 9(1), pages 1-21, December.
    11. Sun, Jiafeng & Frees, Edward W. & Rosenberg, Marjorie A., 2008. "Heavy-tailed longitudinal data modeling using copulas," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 817-830, April.
    12. Punzo, Antonio & Bagnato, Luca & Maruotti, Antonello, 2018. "Compound unimodal distributions for insurance losses," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 95-107.
    13. Dickens, Richard & Machin, Stephen & Manning, Alan, 1998. "Estimating the effect of minimum wages on employment from the distribution of wages: A critical view," Labour Economics, Elsevier, vol. 5(2), pages 109-134, June.
    14. Yixuan Wang & Jianzhu Li & Ping Feng & Rong Hu, 2015. "A Time-Dependent Drought Index for Non-Stationary Precipitation Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5631-5647, December.
    15. Meya, Jasper N. & Drupp, Moritz A. & Hanley, Nick, 2021. "Testing structural benefit transfer: The role of income inequality," Resource and Energy Economics, Elsevier, vol. 64(C).
    16. Panayi, Efstathios & Peters, Gareth W. & Danielsson, Jon & Zigrand, Jean-Pierre, 2018. "Designating market maker behaviour in limit order book markets," Econometrics and Statistics, Elsevier, vol. 5(C), pages 20-44.
    17. Gauss Cordeiro & Josemar Rodrigues & Mário Castro, 2012. "The exponential COM-Poisson distribution," Statistical Papers, Springer, vol. 53(3), pages 653-664, August.
    18. Hirukawa, Masayuki, 2010. "Nonparametric multiplicative bias correction for kernel-type density estimation on the unit interval," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 473-495, February.
    19. Mark C. Berger & Dan A. Black, 1998. "The Duration Of Medicaid Spells: An Analysis Using Flow And Stock Samples," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 667-675, November.
    20. Ouimet, Frédéric & Tolosana-Delgado, Raimon, 2022. "Asymptotic properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 187(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metron:v:79:y:2021:i:1:d:10.1007_s40300-021-00203-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.