IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v88y2025i1d10.1007_s00184-023-00944-y.html
   My bibliography  Save this article

On Berry–Esséen bound of frequency polygon estimation under $$\rho $$ ρ -mixing samples

Author

Listed:
  • Yi Wu

    (Chizhou University)

  • Xuejun Wang

    (Anhui University)

Abstract

The frequency polygon estimation, which is based on histogram technique, has similar convergence rate as those of non-negative kernel estimators and the advantages of computational simplicity. This work will study the Berry–Esséen bound of frequency polygon estimation with $$\rho $$ ρ -mixing samples under some general conditions. The rates are shown to be $$O(n^{-1/9})$$ O ( n - 1 / 9 ) if the mixing coefficients decay polynomially and $$O(n^{-1/6}\log ^{1/3}n)$$ O ( n - 1 / 6 log 1 / 3 n ) if the mixing coefficients decay geometrically. These results improve and extend the corresponding ones in the literature and reveal that the frequency polygon estimator also has similar Berry–Esséen bound as those of kernel estimators. Moreover, some numerical analysis is also presented to assess the finite sample performance of the theoretical results.

Suggested Citation

  • Yi Wu & Xuejun Wang, 2025. "On Berry–Esséen bound of frequency polygon estimation under $$\rho $$ ρ -mixing samples," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 88(1), pages 19-41, January.
  • Handle: RePEc:spr:metrik:v:88:y:2025:i:1:d:10.1007_s00184-023-00944-y
    DOI: 10.1007/s00184-023-00944-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-023-00944-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-023-00944-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:88:y:2025:i:1:d:10.1007_s00184-023-00944-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.