IDEAS home Printed from https://ideas.repec.org/a/bla/stanee/v76y2022i1p35-64.html
   My bibliography  Save this article

Goodness‐of‐fit tests for Poisson count time series based on the Stein–Chen identity

Author

Listed:
  • Boris Aleksandrov
  • Christian H. Weiß
  • Carsten Jentsch

Abstract

To test the null hypothesis of a Poisson marginal distribution, test statistics based on the Stein–Chen identity are proposed. For a wide class of Poisson count time series, the asymptotic distribution of different types of Stein–Chen statistics is derived, also if multiple statistics are jointly applied. The performance of the tests is analyzed with simulations, as well as the question which Stein–Chen functions should be used for which alternative. Illustrative data examples are presented, and possible extensions of the novel Stein–Chen approach are discussed as well.

Suggested Citation

  • Boris Aleksandrov & Christian H. Weiß & Carsten Jentsch, 2022. "Goodness‐of‐fit tests for Poisson count time series based on the Stein–Chen identity," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 76(1), pages 35-64, February.
  • Handle: RePEc:bla:stanee:v:76:y:2022:i:1:p:35-64
    DOI: 10.1111/stan.12252
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/stan.12252
    Download Restriction: no

    File URL: https://libkey.io/10.1111/stan.12252?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Boris Aleksandrov & Christian H. Weiß, 2020. "Parameter estimation and diagnostic tests for INMA(1) processes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 196-232, March.
    2. Zhu, Fukang & Wang, Dehui, 2010. "Diagnostic checking integer-valued ARCH(p) models using conditional residual autocorrelations," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 496-508, February.
    3. Doukhan, Paul & Fokianos, Konstantinos & Li, Xiaoyin, 2012. "On weak dependence conditions: The case of discrete valued processes," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 1941-1948.
    4. Boris Aleksandrov & Christian H. Weiß, 2020. "Testing the dispersion structure of count time series using Pearson residuals," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(3), pages 325-361, September.
    5. Sebastian Schweer & Christian H. Weiß, 2016. "Testing for Poisson arrivals in INAR(1) processes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 503-524, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boris Aleksandrov & Christian H. Weiß & Simon Nik & Maxime Faymonville & Carsten Jentsch, 2024. "Modelling and diagnostic tests for Poisson and negative-binomial count time series," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 87(7), pages 843-887, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weiß, Christian H. & Zhu, Fukang, 2024. "Conditional-mean multiplicative operator models for count time series," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).
    2. Masoomeh Forughi & Zohreh Shishebor & Atefeh Zamani, 2022. "Portmanteau tests for generalized integer-valued autoregressive time series models," Statistical Papers, Springer, vol. 63(4), pages 1163-1185, August.
    3. Zeng, Xiaoqiang & Kakizawa, Yoshihide, 2024. "Two-step conditional least squares estimation in ADCINAR(1) process, revisited," Statistics & Probability Letters, Elsevier, vol. 206(C).
    4. Mirko Armillotta & Paolo Gorgi, 2023. "Pseudo-variance quasi-maximum likelihood estimation of semi-parametric time series models," Tinbergen Institute Discussion Papers 23-054/III, Tinbergen Institute.
    5. Christian H. Weiß & Esmeralda Gonçalves & Nazaré Mendes Lopes, 2017. "Testing the compounding structure of the CP-INARCH model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(5), pages 571-603, July.
    6. Truquet, Lionel, 2023. "Strong mixing properties of discrete-valued time series with exogenous covariates," Stochastic Processes and their Applications, Elsevier, vol. 160(C), pages 294-317.
    7. Xu, Hai-Yan & Xie, Min & Goh, Thong Ngee & Fu, Xiuju, 2012. "A model for integer-valued time series with conditional overdispersion," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4229-4242.
    8. Christian H. Weiß & Sebastian Schweer, 2015. "Detecting overdispersion in INARCH(1) processes," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(3), pages 281-297, August.
    9. Zeng, Xiaoqiang & Kakizawa, Yoshihide, 2022. "Bias-correction of some estimators in the INAR(1) process," Statistics & Probability Letters, Elsevier, vol. 187(C).
    10. Kai Yang & Yiwei Zhao & Han Li & Dehui Wang, 2023. "On bivariate threshold Poisson integer-valued autoregressive processes," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(8), pages 931-963, November.
    11. Raymond Cheng & Charles B. Harris, 2015. "Mixed-Norm Spaces and Prediction of SαS Moving Averages," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(6), pages 853-875, November.
    12. Weiß, Christian H., 2010. "INARCH(1) processes: Higher-order moments and jumps," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1771-1780, December.
    13. Boris Aleksandrov & Christian H. Weiß, 2020. "Testing the dispersion structure of count time series using Pearson residuals," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(3), pages 325-361, September.
    14. Scotto, Manuel G. & Weiß, Christian H. & Silva, Maria Eduarda & Pereira, Isabel, 2014. "Bivariate binomial autoregressive models," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 233-251.
    15. Šárka Hudecová & Marie Hušková & Simos G. Meintanis, 2017. "Tests for Structural Changes in Time Series of Counts," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 843-865, December.
    16. Fukang Zhu & Lei Shi & Shuangzhe Liu, 2015. "Influence diagnostics in log-linear integer-valued GARCH models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(3), pages 311-335, July.
    17. Boris Aleksandrov & Christian H. Weiß & Simon Nik & Maxime Faymonville & Carsten Jentsch, 2024. "Modelling and diagnostic tests for Poisson and negative-binomial count time series," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 87(7), pages 843-887, October.
    18. Kwan, Wilson & Li, Wai Keung & Li, Guodong, 2012. "On the estimation and diagnostic checking of the ARFIMA–HYGARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3632-3644.
    19. Bennedsen, Mikkel & Lunde, Asger & Shephard, Neil & Veraart, Almut E.D., 2023. "Inference and forecasting for continuous-time integer-valued trawl processes," Journal of Econometrics, Elsevier, vol. 236(2).
    20. Fukang Zhu & Dehui Wang, 2011. "Estimation and testing for a Poisson autoregressive model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 73(2), pages 211-230, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stanee:v:76:y:2022:i:1:p:35-64. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0039-0402 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.