IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v86y2023i7d10.1007_s00184-023-00893-6.html
   My bibliography  Save this article

Robust optimal designs using a model misspecification term

Author

Listed:
  • Renata Eirini Tsirpitzi

    (Stockholm University)

  • Frank Miller

    (Stockholm University
    Linköping University)

  • Carl-Fredrik Burman

    (AstraZeneca
    Karolinska Institutet)

Abstract

Much of classical optimal design theory relies on specifying a model with only a small number of parameters. In many applications, such models will give reasonable approximations. However, they will often be found not to be entirely correct when enough data are at hand. A property of classical optimal design methodology is that the amount of data does not influence the design when a fixed model is used. However, it is reasonable that a low dimensional model is satisfactory only if limited data is available. With more data available, more aspects of the underlying relationship can be assessed. We consider a simple model that is not thought to be fully correct. The model misspecification, that is, the difference between the true mean and the simple model, is explicitly modeled with a stochastic process. This gives a unified approach to handle situations with both limited and rich data. Our objective is to estimate the combined model, which is the sum of the simple model and the assumed misspecification process. In our situation, the low-dimensional model can be viewed as a fixed effect and the misspecification term as a random effect in a mixed-effects model. Our aim is to predict within this model. We describe how we minimize the prediction error using an optimal design. We compute optimal designs for the full model in different cases. The results confirm that the optimal design depends strongly on the sample size. In low-information situations, traditional optimal designs for models with a small number of parameters are sufficient, while the inclusion of the misspecification term lead to very different designs in data-rich cases.

Suggested Citation

  • Renata Eirini Tsirpitzi & Frank Miller & Carl-Fredrik Burman, 2023. "Robust optimal designs using a model misspecification term," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(7), pages 781-804, October.
  • Handle: RePEc:spr:metrik:v:86:y:2023:i:7:d:10.1007_s00184-023-00893-6
    DOI: 10.1007/s00184-023-00893-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-023-00893-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-023-00893-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xin Liu & Rong-Xian Yue & Weng Kee Wong, 2019. "D-optimal designs for multi-response linear mixed models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(1), pages 87-98, January.
    2. Maryna Prus & Rainer Schwabe, 2016. "Optimal designs for the prediction of individual parameters in hierarchical models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 175-191, January.
    3. Wolfgang Bischoff & Enkelejd Hashorva & Jürg Hüsler & Frank Miller, 2003. "Exact asymptotics for Boundary crossings of the brownian bridge with trend with application to the Kolmogorov test," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(4), pages 849-864, December.
    4. Maryna Prus, 2020. "Optimal designs in multiple group random coefficient regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 233-254, March.
    5. Biedermann, Stefanie & Dette, Holger, 2001. "Optimal designs for testing the functional form of a regression via nonparametric estimation techniques," Statistics & Probability Letters, Elsevier, vol. 52(2), pages 215-224, April.
    6. Wiens, Douglas P., 1991. "Designs for approximately linear regression: two optimality properties of uniform designs," Statistics & Probability Letters, Elsevier, vol. 12(3), pages 217-221, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wiens, Douglas P., 2010. "Robustness of design for the testing of lack of fit and for estimation in binary response models," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3371-3378, December.
    2. Linglong Kong & Douglas P. Wiens, 2015. "Model-Robust Designs for Quantile Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 233-245, March.
    3. Mandal, Nripes Kumar & Pal, Manisha, 2013. "Maximin designs for the detection of synergistic effects," Statistics & Probability Letters, Elsevier, vol. 83(7), pages 1632-1637.
    4. Lei He & Rong-Xian Yue, 2021. "D-optimal designs for hierarchical linear models with intraclass covariance structure," Statistical Papers, Springer, vol. 62(3), pages 1349-1361, June.
    5. Liu, Xin & Ye, Min & Yue, Rong-Xian, 2021. "Optimal designs for comparing population curves in hierarchical models," Statistics & Probability Letters, Elsevier, vol. 178(C).
    6. Bischoff, Wolfgang & Miller, Frank, 2006. "Lack-of-fit-efficiently optimal designs to estimate the highest coefficient of a polynomial with large degree," Statistics & Probability Letters, Elsevier, vol. 76(15), pages 1701-1704, September.
    7. Dette, Holger & Wiens, Douglas P., 2007. "Robust designs for 3D shape analysis with spherical harmonic descriptors," Technical Reports 2007,12, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    8. He, Lei & He, Daojiang, 2020. "R-optimal designs for individual prediction in random coefficient regression models," Statistics & Probability Letters, Elsevier, vol. 159(C).
    9. Prus, Maryna, 2023. "Optimal designs for prediction of random effects in two-groups models with multivariate response," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    10. Douglas P. Wiens, 2009. "Robust discrimination designs," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(4), pages 805-829, September.
    11. Maryna Prus, 2019. "Optimal designs for minimax-criteria in random coefficient regression models," Statistical Papers, Springer, vol. 60(2), pages 465-478, April.
    12. Xin Liu & Rong-Xian Yue & Weng Kee Wong, 2019. "D-optimal designs for multi-response linear mixed models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(1), pages 87-98, January.
    13. Maryna Prus, 2023. "Optimal designs for prediction in random coefficient regression with one observation per individual," Statistical Papers, Springer, vol. 64(4), pages 1057-1068, August.
    14. Maryna Prus & Hans-Peter Piepho, 2021. "Optimizing the Allocation of Trials to Sub-regions in Multi-environment Crop Variety Testing," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(2), pages 267-288, June.
    15. Deng, Pingjin, 2017. "Boundary non-crossing probabilities for Slepian process," Statistics & Probability Letters, Elsevier, vol. 122(C), pages 28-35.
    16. Hengzhen Huang & Hong†Bin Fang & Ming T. Tan, 2018. "Experimental design for multi†drug combination studies using signaling networks," Biometrics, The International Biometric Society, vol. 74(2), pages 538-547, June.
    17. Huang, Hengzhen & Chen, Xueping, 2021. "Compromise design for combination experiment of two drugs," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    18. Liu, Xin & Yue, Rong-Xian & Chatterjee, Kashinath, 2020. "Geometric characterization of D-optimal designs for random coefficient regression models," Statistics & Probability Letters, Elsevier, vol. 159(C).
    19. Maryna Prus, 2020. "Optimal designs in multiple group random coefficient regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 233-254, March.
    20. Prus, Maryna, 2019. "Various optimality criteria for the prediction of individual response curves," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 36-41.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:86:y:2023:i:7:d:10.1007_s00184-023-00893-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.