IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v76y2006i15p1701-1704.html
   My bibliography  Save this article

Lack-of-fit-efficiently optimal designs to estimate the highest coefficient of a polynomial with large degree

Author

Listed:
  • Bischoff, Wolfgang
  • Miller, Frank

Abstract

To check regression models Bischoff and Miller (2006a. Optimal designs which are efficient for lack of fit tests. Ann. Stat., to appear.) introduced optimal designs to estimate a parameter in the class of designs which guarantee a certain efficiency with respect to the power of a lack of fit (LOF-) test. One part of such an optimal design is absolutely continuous with respect to the Lebesgue measure and the other part consists of a finite number of mass points. The optimal design to estimate the highest coefficient of a polynomial regression of fixed degree k-1 (ek-optimal design) in the class of designs with LOF-efficiency of at least r has the same mass points as the classical ek-optimal design if r is small enough. In this paper we investigate the set of efficiencies r with that property.

Suggested Citation

  • Bischoff, Wolfgang & Miller, Frank, 2006. "Lack-of-fit-efficiently optimal designs to estimate the highest coefficient of a polynomial with large degree," Statistics & Probability Letters, Elsevier, vol. 76(15), pages 1701-1704, September.
  • Handle: RePEc:eee:stapro:v:76:y:2006:i:15:p:1701-1704
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(06)00124-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Biedermann, Stefanie & Dette, Holger, 2001. "Optimal designs for testing the functional form of a regression via nonparametric estimation techniques," Statistics & Probability Letters, Elsevier, vol. 52(2), pages 215-224, April.
    2. Wiens, Douglas P., 1991. "Designs for approximately linear regression: two optimality properties of uniform designs," Statistics & Probability Letters, Elsevier, vol. 12(3), pages 217-221, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wiens, Douglas P., 2010. "Robustness of design for the testing of lack of fit and for estimation in binary response models," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3371-3378, December.
    2. Mandal, Nripes Kumar & Pal, Manisha, 2013. "Maximin designs for the detection of synergistic effects," Statistics & Probability Letters, Elsevier, vol. 83(7), pages 1632-1637.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wiens, Douglas P., 2010. "Robustness of design for the testing of lack of fit and for estimation in binary response models," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3371-3378, December.
    2. Linglong Kong & Douglas P. Wiens, 2015. "Model-Robust Designs for Quantile Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 233-245, March.
    3. Mandal, Nripes Kumar & Pal, Manisha, 2013. "Maximin designs for the detection of synergistic effects," Statistics & Probability Letters, Elsevier, vol. 83(7), pages 1632-1637.
    4. Renata Eirini Tsirpitzi & Frank Miller & Carl-Fredrik Burman, 2023. "Robust optimal designs using a model misspecification term," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(7), pages 781-804, October.
    5. Dette, Holger & Wiens, Douglas P., 2007. "Robust designs for 3D shape analysis with spherical harmonic descriptors," Technical Reports 2007,12, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    6. Douglas P. Wiens, 2009. "Robust discrimination designs," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(4), pages 805-829, September.
    7. Hengzhen Huang & Hong†Bin Fang & Ming T. Tan, 2018. "Experimental design for multi†drug combination studies using signaling networks," Biometrics, The International Biometric Society, vol. 74(2), pages 538-547, June.
    8. Huang, Hengzhen & Chen, Xueping, 2021. "Compromise design for combination experiment of two drugs," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    9. Xiaojian Xu & Xiaoli Shang, 2017. "D-optimal designs for full and reduced Fourier regression models," Statistical Papers, Springer, vol. 58(3), pages 811-829, September.
    10. Biedermann, Stefanie & Dette, Holger, 2000. "Optimal designs for testing the functional form of a regression via nonparametric estimation techniques," Technical Reports 2000,41, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    11. Ramón Ardanuy & J. López-Fidalgo & Patrick Laycock & Weng Wong, 1999. "When is an Equally-Weighted Design D-optimal?," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 51(3), pages 531-540, September.
    12. Biedermann, Stefanie & Dette, Holger, 2001. "Optimal designs for testing the functional form of a regression via nonparametric estimation techniques," Statistics & Probability Letters, Elsevier, vol. 52(2), pages 215-224, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:76:y:2006:i:15:p:1701-1704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.