IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v85y2022i6d10.1007_s00184-021-00847-w.html
   My bibliography  Save this article

Prediction of record values by using quantile regression curves and distortion functions

Author

Listed:
  • Jorge Navarro

    (Universidad de Murcia)

Abstract

The purpose of the paper is to provide a general method based on conditional quantile curves to predict record values from preceding records. The predictions are based on conditional median (or median regression) curves. Moreover, conditional quantiles curves are used to provide confidence bands for these predictions. The method is based on the recently introduced concept of multivariate distorted distributions that are used instead of copulas to represent the dependence structure. This concept allows us to compute the conditional quantile curves in a simple way. The theoretical findings are illustrated with a non-parametric model (standard uniform), two parametric models (exponential and Pareto), and a non-parametric procedure for the general case. A real data set and a simulated case study in reliability are analysed.

Suggested Citation

  • Jorge Navarro, 2022. "Prediction of record values by using quantile regression curves and distortion functions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(6), pages 675-706, August.
  • Handle: RePEc:spr:metrik:v:85:y:2022:i:6:d:10.1007_s00184-021-00847-w
    DOI: 10.1007/s00184-021-00847-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-021-00847-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-021-00847-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grigoriy Volovskiy & Udo Kamps, 2020. "Maximum product of spacings prediction of future record values," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(7), pages 853-868, October.
    2. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
    3. Wang, Shaun, 1996. "Premium Calculation by Transforming the Layer Premium Density," ASTIN Bulletin, Cambridge University Press, vol. 26(1), pages 71-92, May.
    4. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    5. Grigoriy Volovskiy & Udo Kamps, 2020. "Maximum observed likelihood prediction of future record values," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 1072-1097, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio Di Crescenzo & Abdolsaeed Toomaj, 2022. "Weighted Mean Inactivity Time Function with Applications," Mathematics, MDPI, vol. 10(16), pages 1-30, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jorge Navarro & Franco Pellerey & Julio Mulero, 2022. "On sums of dependent random lifetimes under the time-transformed exponential model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 879-900, December.
    2. Leitner, Johannes, 2005. "Dilatation monotonous Choquet integrals," Journal of Mathematical Economics, Elsevier, vol. 41(8), pages 994-1006, December.
    3. Maria Scutellà & Raffaella Recchia, 2013. "Robust portfolio asset allocation and risk measures," Annals of Operations Research, Springer, vol. 204(1), pages 145-169, April.
    4. Kaluszka, M. & Laeven, R.J.A. & Okolewski, A., 2012. "A note on weighted premium calculation principles," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 379-381.
    5. Lin, Feng & Peng, Liang & Xie, Jiehua & Yang, Jingping, 2018. "Stochastic distortion and its transformed copula," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 148-166.
    6. Jaume Belles-Sampera & Montserrat Guillén & Miguel Santolino, 2013. "“The use of flexible quantile-based measures in risk assessment”," IREA Working Papers 201323, University of Barcelona, Research Institute of Applied Economics, revised Dec 2013.
    7. Jorge Navarro & Camilla Calì & Maria Longobardi & Fabrizio Durante, 2022. "Distortion representations of multivariate distributions," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(4), pages 925-954, October.
    8. Alexis Bienvenüe & Didier Rullière, 2012. "Iterative Adjustment of Survival Functions by Composed Probability Distortions," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 37(2), pages 156-179, September.
    9. Chuancun Yin & Dan Zhu, 2015. "New class of distortion risk measures and their tail asymptotics with emphasis on VaR," Papers 1503.08586, arXiv.org, revised Mar 2016.
    10. Dilip B. Madan & Yazid M. Sharaiha, 2015. "Option overlay strategies," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1175-1190, July.
    11. Gilbert W. Bassett, 2004. "Pessimistic Portfolio Allocation and Choquet Expected Utility," Journal of Financial Econometrics, Oxford University Press, vol. 2(4), pages 477-492.
    12. Tim J. Boonen, 2016. "Optimal Reinsurance with Heterogeneous Reference Probabilities," Risks, MDPI, vol. 4(3), pages 1-11, July.
    13. Wächter, Hans Peter & Mazzoni, Thomas, 2013. "Consistent modeling of risk averse behavior with spectral risk measures," European Journal of Operational Research, Elsevier, vol. 229(2), pages 487-495.
    14. Leorato, Samantha & Peracchi, Franco & Tanase, Andrei V., 2012. "Asymptotically efficient estimation of the conditional expected shortfall," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 768-784.
    15. Laeven, Roger J. A. & Goovaerts, Marc J., 2004. "An optimization approach to the dynamic allocation of economic capital," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 299-319, October.
    16. Young, Virginia R. & Zariphopoulou, Thaleia, 2000. "Computation of distorted probabilities for diffusion processes via stochastic control methods," Insurance: Mathematics and Economics, Elsevier, vol. 27(1), pages 1-18, August.
    17. Goncalves Marcelo & Kolev Nikolai & Fabris Antonio, 2008. "Bounds for Distorted Risk Measures," Stochastics and Quality Control, De Gruyter, vol. 23(2), pages 243-255, January.
    18. Debora Daniela Escobar & Georg Ch. Pflug, 2020. "The distortion principle for insurance pricing: properties, identification and robustness," Annals of Operations Research, Springer, vol. 292(2), pages 771-794, September.
    19. Leili Javanmardi & Yuri Lawryshyn, 2016. "A new rank dependent utility approach to model risk averse preferences in portfolio optimization," Annals of Operations Research, Springer, vol. 237(1), pages 161-176, February.
    20. John A. Major & Stephen J. Mildenhall, 2020. "Pricing and Capital Allocation for Multiline Insurance Firms With Finite Assets in an Imperfect Market," Papers 2008.12427, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:85:y:2022:i:6:d:10.1007_s00184-021-00847-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.