IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v83y2020i5d10.1007_s00184-019-00748-z.html
   My bibliography  Save this article

Inequalities for Gaussian random variables under Archimedean copula dependence

Author

Listed:
  • Longxiang Fang

    (Anhui Normal University)

  • Wenyu Huang

    (Anhui Normal University)

Abstract

In this paper, we investigate two inequalities based on majorization for two random vectors with different Gaussian marginals and the same underlying Archimedean copulas. The established inequalities generalize well-known results by Slepian.

Suggested Citation

  • Longxiang Fang & Wenyu Huang, 2020. "Inequalities for Gaussian random variables under Archimedean copula dependence," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(5), pages 617-625, July.
  • Handle: RePEc:spr:metrik:v:83:y:2020:i:5:d:10.1007_s00184-019-00748-z
    DOI: 10.1007/s00184-019-00748-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-019-00748-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-019-00748-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Xiaohu & Fang, Rui, 2015. "Ordering properties of order statistics from random variables of Archimedean copulas with applications," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 304-320.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Chen & Li, Xiaohu, 2021. "On stochastic dependence in residual lifetime and inactivity time with some applications," Statistics & Probability Letters, Elsevier, vol. 177(C).
    2. Longxiang Fang & Narayanaswamy Balakrishnan & Wenyu Huang & Shuai Zhang, 2023. "Usual stochastic ordering of the sample maxima from dependent distribution‐free random variables," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 77(1), pages 99-112, February.
    3. Barmalzan, Ghobad & Akrami, Abbas & Balakrishnan, Narayanaswamy, 2020. "Stochastic comparisons of the smallest and largest claim amounts with location-scale claim severities," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 341-352.
    4. Sangita Das & Suchandan Kayal, 2020. "Ordering extremes of exponentiated location-scale models with dependent and heterogeneous random samples," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(8), pages 869-893, November.
    5. Mesfioui Mhamed & Trufin Julien, 2021. "Dispersive order comparisons on extreme order statistics from homogeneous dependent random vectors," Dependence Modeling, De Gruyter, vol. 9(1), pages 385-393, January.
    6. Junrui Wang & Rongfang Yan & Bin Lu, 2020. "Stochastic Comparisons of Parallel and Series Systems with Type II Half Logistic-Resilience Scale Components," Mathematics, MDPI, vol. 8(4), pages 1-18, March.
    7. Enrique de Amo & María del Rosario Rodríguez-Griñolo & Manuel Úbeda-Flores, 2024. "Directional Dependence Orders of Random Vectors," Mathematics, MDPI, vol. 12(3), pages 1-14, January.
    8. M. Mesfioui & M. Kayid & S. Izadkhah, 2017. "Stochastic comparisons of order statistics from heterogeneous random variables with Archimedean copula," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(6), pages 749-766, November.
    9. Li, Chen & Li, Xiaohu, 2019. "Hazard rate and reversed hazard rate orders on extremes of heterogeneous and dependent random variables," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 104-111.
    10. Chen Li & Rui Fang & Xiaohu Li, 2016. "Stochastic somparisons of order statistics from scaled and interdependent random variables," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(5), pages 553-578, July.
    11. Ariyafar, Saeed & Tata, Mahbanoo & Rezapour, Mohsen & Madadi, Mohsen, 2020. "Comparison of aggregation, minimum and maximum of two risky portfolios with dependent claims," Journal of Multivariate Analysis, Elsevier, vol. 178(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:83:y:2020:i:5:d:10.1007_s00184-019-00748-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.