IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i3p419-d1327852.html
   My bibliography  Save this article

Directional Dependence Orders of Random Vectors

Author

Listed:
  • Enrique de Amo

    (Department of Mathematics, University of Almería, 04120 Almería, Spain)

  • María del Rosario Rodríguez-Griñolo

    (Department of Economics, Quantitative Methods and Economic History, Pablo de Olavide University, 41013 Seville, Spain)

  • Manuel Úbeda-Flores

    (Department of Mathematics, University of Almería, 04120 Almería, Spain)

Abstract

In this paper, we define a multivariate order based on the concept of orthant directional dependence and study some of its properties. The relationships with other dependence orders given in the literature are also studied. We analyze the order between two random vectors in terms of their associated copulas and illustrate our results with several examples.

Suggested Citation

  • Enrique de Amo & María del Rosario Rodríguez-Griñolo & Manuel Úbeda-Flores, 2024. "Directional Dependence Orders of Random Vectors," Mathematics, MDPI, vol. 12(3), pages 1-14, January.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:3:p:419-:d:1327852
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/3/419/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/3/419/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. George Kimeldorf & Allan Sampson, 1989. "A framework for positive dependence," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 41(1), pages 31-45, March.
    2. Müller, Alfred & Scarsini, Marco, 2000. "Some Remarks on the Supermodular Order," Journal of Multivariate Analysis, Elsevier, vol. 73(1), pages 107-119, April.
    3. Roger Nelsen & Manuel Úbeda-Flores, 2012. "Directional dependence in multivariate distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(3), pages 677-685, June.
    4. Colangelo, Antonio & Scarsini, Marco & Shaked, Moshe, 2006. "Some positive dependence stochastic orders," Journal of Multivariate Analysis, Elsevier, vol. 97(1), pages 46-78, January.
    5. Ali, Mir M. & Mikhail, N. N. & Haq, M. Safiul, 1978. "A class of bivariate distributions including the bivariate logistic," Journal of Multivariate Analysis, Elsevier, vol. 8(3), pages 405-412, September.
    6. Colangelo, Antonio & Scarsini, Marco & Shaked, Moshe, 2005. "Some notions of multivariate positive dependence," Insurance: Mathematics and Economics, Elsevier, vol. 37(1), pages 13-26, August.
    7. Li, Xiaohu & Fang, Rui, 2015. "Ordering properties of order statistics from random variables of Archimedean copulas with applications," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 304-320.
    8. Shaked, Moshe, 1982. "A general theory of some positive dependence notions," Journal of Multivariate Analysis, Elsevier, vol. 12(2), pages 199-218, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Colangelo Antonio, 2006. "Some Positive Dependence Orderings involving Tail Dependence," Economics and Quantitative Methods qf0601, Department of Economics, University of Insubria.
    2. Colangelo, Antonio & Scarsini, Marco & Shaked, Moshe, 2005. "Some notions of multivariate positive dependence," Insurance: Mathematics and Economics, Elsevier, vol. 37(1), pages 13-26, August.
    3. Gijbels, Irène & Sznajder, Dominik, 2013. "Testing tail monotonicity by constrained copula estimation," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 338-351.
    4. Colangelo Antonio, 2005. "Multivariate hazard orderings of discrete random vectors," Economics and Quantitative Methods qf05010, Department of Economics, University of Insubria.
    5. Colangelo, Antonio & Scarsini, Marco & Shaked, Moshe, 2006. "Some positive dependence stochastic orders," Journal of Multivariate Analysis, Elsevier, vol. 97(1), pages 46-78, January.
    6. Colangelo, Antonio, 2008. "A study on LTD and RTI positive dependence orderings," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2222-2229, October.
    7. Holzer, Jorge & Olson, Lars J., 2021. "Precautionary buffers and stochastic dependence in environmental policy," Journal of Environmental Economics and Management, Elsevier, vol. 106(C).
    8. Dolati, Ali & Genest, Christian & Kochar, Subhash C., 2008. "On the dependence between the extreme order statistics in the proportional hazards model," Journal of Multivariate Analysis, Elsevier, vol. 99(5), pages 777-786, May.
    9. Colangelo, Antonio & Hu, Taizhong & Shaked, Moshe, 2008. "Conditional orderings and positive dependence," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 358-371, March.
    10. Zalzadeh, Saeed & Pellerey, Franco, 2016. "A positive dependence notion based on componentwise unimodality of copulas," Statistics & Probability Letters, Elsevier, vol. 112(C), pages 51-57.
    11. Jae Youn Ahn & Sebastian Fuchs, 2020. "On Minimal Copulas under the Concordance Order," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 762-780, March.
    12. F. Marta L. Di Lascio & Andrea Menapace & Roberta Pappadà, 2024. "A spatially‐weighted AMH copula‐based dissimilarity measure for clustering variables: An application to urban thermal efficiency," Environmetrics, John Wiley & Sons, Ltd., vol. 35(1), February.
    13. Fabrizio Durante & Roberto Ghiselli-Ricci, 2012. "Supermigrative copulas and positive dependence," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(3), pages 327-342, July.
    14. Ho-Yin Mak & Zuo-Jun Max Shen, 2014. "Pooling and Dependence of Demand and Yield in Multiple-Location Inventory Systems," Manufacturing & Service Operations Management, INFORMS, vol. 16(2), pages 263-269, May.
    15. Laureano Escudero & Eva-María Ortega, 2009. "How retention levels influence the variability of the total risk under reinsurance," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(1), pages 139-157, July.
    16. Kızıldemir, Bünyamin & Privault, Nicolas, 2015. "Supermodular ordering of Poisson arrays," Statistics & Probability Letters, Elsevier, vol. 98(C), pages 136-143.
    17. Koen Decancq, 2014. "Copula-based measurement of dependence between dimensions of well-being," Oxford Economic Papers, Oxford University Press, vol. 66(3), pages 681-701.
    18. Marcello Basili & Paulo Casaca & Alain Chateauneuf & Maurizio Franzini, 2017. "Multidimensional Pigou–Dalton transfers and social evaluation functions," Theory and Decision, Springer, vol. 83(4), pages 573-590, December.
    19. Lu, Zhiyi & Meng, Shengwang & Liu, Leping & Han, Ziqi, 2018. "Optimal insurance design under background risk with dependence," Insurance: Mathematics and Economics, Elsevier, vol. 80(C), pages 15-28.
    20. Arnold Polanski & Evarist Stoja & Ching‐Wai (Jeremy) Chiu, 2021. "Tail risk interdependence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(4), pages 5499-5511, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:3:p:419-:d:1327852. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.