IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v81y2018i6d10.1007_s00184-018-0677-9.html
   My bibliography  Save this article

Special Issue with papers from the “3rd workshop on Goodness-of-fit and change-point problems”

Author

Listed:
  • N. Henze

    (Karlsruhe Institute of Technology (KIT))

  • C. Kirch

    (Otto-von-Guericke University (OvGU))

  • S. G. Meintanis

    (National and Kapodistrian University of Athens
    North-West University)

Abstract

No abstract is available for this item.

Suggested Citation

  • N. Henze & C. Kirch & S. G. Meintanis, 2018. "Special Issue with papers from the “3rd workshop on Goodness-of-fit and change-point problems”," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(6), pages 587-588, August.
  • Handle: RePEc:spr:metrik:v:81:y:2018:i:6:d:10.1007_s00184-018-0677-9
    DOI: 10.1007/s00184-018-0677-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-018-0677-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-018-0677-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael Messer & Stefan Albert & Gaby Schneider, 2018. "The multiple filter test for change point detection in time series," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(6), pages 589-607, August.
    2. Fang Duan & Dominik Wied, 2018. "A residual-based multivariate constant correlation test," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(6), pages 653-687, August.
    3. Ya. Yu. Nikitin, 2018. "Local exact Bahadur efficiencies of two scale-free tests of normality based on a recent characterization," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(6), pages 609-618, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tuomas Rajala & Petteri Packalen & Mari Myllymäki & Annika Kangas, 2023. "Improving Detection of Changepoints in Short and Noisy Time Series with Local Correlations: Connecting the Events in Pixel Neighbourhoods," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(3), pages 564-590, September.
    2. Ji-Eun Choi & Dong Wan Shin, 2021. "A self-normalization break test for correlation matrix," Statistical Papers, Springer, vol. 62(5), pages 2333-2353, October.
    3. Cho, Haeran & Kirch, Claudia, 2024. "Data segmentation algorithms: Univariate mean change and beyond," Econometrics and Statistics, Elsevier, vol. 30(C), pages 76-95.
    4. Junwei Hu & Lihong Wang, 2023. "A weighted U-statistic based change point test for multivariate time series," Statistical Papers, Springer, vol. 64(3), pages 753-778, June.
    5. Haeran Cho & Claudia Kirch, 2022. "Two-stage data segmentation permitting multiscale change points, heavy tails and dependence," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(4), pages 653-684, August.
    6. Liu, Bin & Zhang, Xinsheng & Liu, Yufeng, 2022. "High dimensional change point inference: Recent developments and extensions," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    7. Saisai Ding & Xiaoqin Li & Xiang Dong & Wenzhi Yang, 2020. "The Consistency of the CUSUM-Type Estimator of the Change-Point and Its Application," Mathematics, MDPI, vol. 8(12), pages 1-12, November.
    8. Duan, Fang, 2022. "Forecasting risk measures based on structural breaks in the correlation matrix," Ruhr Economic Papers 945, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:81:y:2018:i:6:d:10.1007_s00184-018-0677-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.