IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v80y2017i6d10.1007_s00184-017-0625-0.html
   My bibliography  Save this article

Multivariate saddlepoint tests on the mean direction of the von Mises–Fisher distribution

Author

Listed:
  • R. Gatto

    (University of Bern)

Abstract

This article provides P values for two new tests on the mean direction of the von Mises–Fisher distribution. The test statistics are obtained from the exponent of the saddlepoint approximation to the density of M-estimators, as suggested by Robinson et al. (Ann Stat 31:1154–1169, 2003). These test statistics are chi-square distributed with asymptotically small relative errors. Despite the high dimensionality of the problem, the proposed P values are accurate and simple to compute. The numerical precision of the P values of the new tests is illustrated by some simulation studies.

Suggested Citation

  • R. Gatto, 2017. "Multivariate saddlepoint tests on the mean direction of the von Mises–Fisher distribution," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(6), pages 733-747, November.
  • Handle: RePEc:spr:metrik:v:80:y:2017:i:6:d:10.1007_s00184-017-0625-0
    DOI: 10.1007/s00184-017-0625-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-017-0625-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-017-0625-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Yanyuan & Ronchetti, Elvezio, 2011. "Saddlepoint Test in Measurement Error Models," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 147-156.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lorenzo Camponovo & Taisuke Otsu, 2017. "Relative error accurate statistic based on nonparametric likelihood," STICERD - Econometrics Paper Series 593, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    2. Aeberhard, William H. & Cantoni, Eva & Heritier, Stephane, 2017. "Saddlepoint tests for accurate and robust inference on overdispersed count data," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 162-175.
    3. Ronchetti, Elvezio, 2020. "Accurate and robust inference," Econometrics and Statistics, Elsevier, vol. 14(C), pages 74-88.
    4. Ravenscroft, Sue & Williams, Paul F., 2021. "Sustaining discreditable accounting research through ignorance: The mainstream elite’s response to the 2008 financial crisis," Accounting, Organizations and Society, Elsevier, vol. 95(C).
    5. Camponovo, Lorenzo & Otsu, Taisuke, 2014. "On Bartlett correctability of empirical likelihood in generalized power divergence family," Statistics & Probability Letters, Elsevier, vol. 86(C), pages 38-43.
    6. Camponovo, Lorenzo & Matsushita, Yukitoshi & Otsu, Taisuke, 2021. "Relative error accurate statistic based on nonparametric likelihood," LSE Research Online Documents on Economics 107521, London School of Economics and Political Science, LSE Library.
    7. Grace Y. Yi & Yanyuan Ma & Donna Spiegelman & Raymond J. Carroll, 2015. "Functional and Structural Methods With Mixed Measurement Error and Misclassification in Covariates," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 681-696, June.
    8. Gubhinder Kundhi & Paul Rilstone, 2015. "Saddlepoint expansions for GEL estimators," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(1), pages 1-24, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:80:y:2017:i:6:d:10.1007_s00184-017-0625-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.