IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v80y2017i2d10.1007_s00184-016-0599-3.html
   My bibliography  Save this article

Barycentric algorithm for computing D-optimal size- and cost-constrained designs of experiments

Author

Listed:
  • Radoslav Harman

    (Comenius University in Bratislava)

  • Eva Benková

    (Comenius University in Bratislava)

Abstract

In this paper, we study the problem of D-optimal experimental design under two linear constraints, which can be interpreted as simultaneous restrictions on the size and on the cost of the experiment. For computing a size- and cost-constrained approximate D-optimal design, we propose a specification of the “barycentric” multiplicative algorithm with sequential removal of redundant design points. We analytically prove convergence results for the proposed algorithm and numerically demonstrate its favorable properties compared to competing methods.

Suggested Citation

  • Radoslav Harman & Eva Benková, 2017. "Barycentric algorithm for computing D-optimal size- and cost-constrained designs of experiments," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(2), pages 201-225, February.
  • Handle: RePEc:spr:metrik:v:80:y:2017:i:2:d:10.1007_s00184-016-0599-3
    DOI: 10.1007/s00184-016-0599-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-016-0599-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-016-0599-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harman, Radoslav & Filová, Lenka, 2014. "Computing efficient exact designs of experiments using integer quadratic programming," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1159-1167.
    2. Yu, Yaming, 2010. "Strict monotonicity and convergence rate of Titterington's algorithm for computing D-optimal designs," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1419-1425, June.
    3. Harman, Radoslav & Pronzato, Luc, 2007. "Improvements on removing nonoptimal support points in D-optimum design algorithms," Statistics & Probability Letters, Elsevier, vol. 77(1), pages 90-94, January.
    4. Min Yang & Stefanie Biedermann & Elina Tang, 2013. "On Optimal Designs for Nonlinear Models: A General and Efficient Algorithm," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1411-1420, December.
    5. Torsney, B. & Mandal, S., 2006. "Two classes of multiplicative algorithms for constructing optimizing distributions," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1591-1601, December.
    6. Dette, Holger & Pepelyshev, Andrey & Zhigljavsky, Anatoly, 2008. "Improving updating rules in multiplicative algorithms for computing D-optimal designs," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 312-320, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duarte, Belmiro P.M. & Atkinson, Anthony C. & Granjo, Jose F.O & Oliveira, Nuno M.C, 2022. "Optimal design of experiments for implicit models," LSE Research Online Documents on Economics 107584, London School of Economics and Political Science, LSE Library.
    2. Duarte, Belmiro P.M. & Atkinson, Anthony C. & Granjo, Jose F.O & Oliveira, Nuno M.C, 2019. "Optimal design of experiments for liquid–liquid equilibria characterization via semidefinite programming," LSE Research Online Documents on Economics 102500, London School of Economics and Political Science, LSE Library.
    3. Belmiro P. M. Duarte, 2023. "Exact Optimal Designs of Experiments for Factorial Models via Mixed-Integer Semidefinite Programming," Mathematics, MDPI, vol. 11(4), pages 1-17, February.
    4. Yu, Yaming, 2010. "Strict monotonicity and convergence rate of Titterington's algorithm for computing D-optimal designs," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1419-1425, June.
    5. Pronzato, Luc, 2013. "A delimitation of the support of optimal designs for Kiefer’s ϕp-class of criteria," Statistics & Probability Letters, Elsevier, vol. 83(12), pages 2721-2728.
    6. Lenka Filová & Radoslav Harman, 2020. "Ascent with quadratic assistance for the construction of exact experimental designs," Computational Statistics, Springer, vol. 35(2), pages 775-801, June.
    7. Sahu, Nitesh & Babu, Prabhu, 2021. "A new monotonic algorithm for the E-optimal experiment design problem," Statistics & Probability Letters, Elsevier, vol. 174(C).
    8. Lianyan Fu & Faming Ma & Zhuoxi Yu & Zhichuan Zhu, 2023. "Multiplication Algorithms for Approximate Optimal Distributions with Cost Constraints," Mathematics, MDPI, vol. 11(8), pages 1-14, April.
    9. Rosa, Samuel & Harman, Radoslav, 2022. "Computing minimum-volume enclosing ellipsoids for large datasets," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
    10. Lucy L. Gao & Julie Zhou, 2017. "D-optimal designs based on the second-order least squares estimator," Statistical Papers, Springer, vol. 58(1), pages 77-94, March.
    11. Tim Holland-Letz & Holger Dette & Didier Renard, 2012. "Efficient Algorithms for Optimal Designs with Correlated Observations in Pharmacokinetics and Dose-Finding Studies," Biometrics, The International Biometric Society, vol. 68(1), pages 138-145, March.
    12. Monica Dessole & Fabio Marcuzzi & Marco Vianello, 2020. "dCATCH—A Numerical Package for d-Variate near G-Optimal Tchakaloff Regression via Fast NNLS," Mathematics, MDPI, vol. 8(7), pages 1-15, July.
    13. Harman, Radoslav & Rosa, Samuel, 2019. "Removal of the points that do not support an E-optimal experimental design," Statistics & Probability Letters, Elsevier, vol. 147(C), pages 83-89.
    14. Selin Ahipaşaoğlu, 2015. "Fast algorithms for the minimum volume estimator," Journal of Global Optimization, Springer, vol. 62(2), pages 351-370, June.
    15. Dette, Holger & Pepelyshev, Andrey & Zhigljavsky, Anatoly, 2007. "Improving updating rules in multiplicativealgorithms for computing D-optimal designs," Technical Reports 2007,28, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    16. Dette, Holger & Pepelyshev, Andrey & Zhigljavsky, Anatoly, 2014. "‘Nearly’ universally optimal designs for models with correlated observations," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1103-1112.
    17. Haoyu Wang & Chongqi Zhang, 2022. "The mixture design threshold accepting algorithm for generating $$\varvec{D}$$ D -optimal designs of the mixture models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(3), pages 345-371, April.
    18. Qing Liu & Yihui (Elina) Tang, 2015. "Construction of Heterogeneous Conjoint Choice Designs: A New Approach," Marketing Science, INFORMS, vol. 34(3), pages 346-366, May.
    19. Nedka Dechkova Nikiforova & Rossella Berni & Jesús Fernando López‐Fidalgo, 2022. "Optimal approximate choice designs for a two‐step coffee choice, taste and choice again experiment," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1895-1917, November.
    20. Kao, Ming-Hung & Huang, Ping-Han, 2024. "Hybrid exact-approximate design approach for sparse functional data," Computational Statistics & Data Analysis, Elsevier, vol. 190(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:80:y:2017:i:2:d:10.1007_s00184-016-0599-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.