IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v35y2020i1d10.1007_s00180-019-00941-8.html
   My bibliography  Save this article

Comments on: Hierarchical Inference for genome-wide association studies: a view on methodology with software by Paulo C. Rodrigues and Vanda M. Lourenço

Author

Listed:
  • Paulo C. Rodrigues

    (Federal University of Bahia)

  • Vanda M. Lourenço

    (NOVA University of Lisbon and CMA)

Abstract

No abstract is available for this item.

Suggested Citation

  • Paulo C. Rodrigues & Vanda M. Lourenço, 2020. "Comments on: Hierarchical Inference for genome-wide association studies: a view on methodology with software by Paulo C. Rodrigues and Vanda M. Lourenço," Computational Statistics, Springer, vol. 35(1), pages 57-58, March.
  • Handle: RePEc:spr:compst:v:35:y:2020:i:1:d:10.1007_s00180-019-00941-8
    DOI: 10.1007/s00180-019-00941-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-019-00941-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-019-00941-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N A Heard & P Rubin-Delanchy, 2018. "Choosing between methods of combining $p$-values," Biometrika, Biometrika Trust, vol. 105(1), pages 239-246.
    2. Nicolai Meinshausen, 2008. "Hierarchical testing of variable importance," Biometrika, Biometrika Trust, vol. 95(2), pages 265-278.
    3. Jonas R. Klasen & Elke Barbez & Lukas Meier & Nicolai Meinshausen & Peter Bühlmann & Maarten Koornneef & Wolfgang Busch & Korbinian Schneeberger, 2016. "A multi-marker association method for genome-wide association studies without the need for population structure correction," Nature Communications, Nature, vol. 7(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Claude Renaux & Laura Buzdugan & Markus Kalisch & Peter Bühlmann, 2020. "Rejoinder on: Hierarchical inference for genome-wide association studies: a view on methodology with software," Computational Statistics, Springer, vol. 35(1), pages 59-67, March.
    2. Claude Renaux & Laura Buzdugan & Markus Kalisch & Peter Bühlmann, 2020. "Hierarchical inference for genome-wide association studies: a view on methodology with software," Computational Statistics, Springer, vol. 35(1), pages 1-40, March.
    3. Song, Zhi & Mukherjee, Amitava & Zhang, Jiujun, 2021. "Some robust approaches based on copula for monitoring bivariate processes and component-wise assessment," European Journal of Operational Research, Elsevier, vol. 289(1), pages 177-196.
    4. Wang Xiaoming & Dinu Irina & Liu Wei & Yasui Yutaka, 2011. "Linear Combination Test for Hierarchical Gene Set Analysis," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-18, March.
    5. Gilles R. Ducharme & Walid Al Akhras, 2016. "Tree based diagnostic procedures following a smooth test of goodness-of-fit," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(8), pages 971-989, November.
    6. Guillermo Durand & Gilles Blanchard & Pierre Neuvial & Etienne Roquain, 2020. "Post hoc false positive control for structured hypotheses," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1114-1148, December.
    7. Patrick K. Kimes & Yufeng Liu & David Neil Hayes & James Stephen Marron, 2017. "Statistical significance for hierarchical clustering," Biometrics, The International Biometric Society, vol. 73(3), pages 811-821, September.
    8. Anders Bredahl Kock & David Preinerstorfer, 2021. "Superconsistency of Tests in High Dimensions," Papers 2106.03700, arXiv.org, revised Jan 2022.
    9. T. Tony Cai & Wenguang Sun, 2017. "Optimal screening and discovery of sparse signals with applications to multistage high throughput studies," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 197-223, January.
    10. Yu, Xiufan & Yao, Jiawei & Xue, Lingzhou, 2024. "Power enhancement for testing multi-factor asset pricing models via Fisher’s method," Journal of Econometrics, Elsevier, vol. 239(2).
    11. Wimmer, Thomas & Geyer-Klingeberg, Jerome & Hütter, Marie & Schmid, Florian & Rathgeber, Andreas, 2021. "The impact of speculation on commodity prices: A Meta-Granger analysis," Journal of Commodity Markets, Elsevier, vol. 22(C).
    12. Xiong, Peihan & Hu, Taizhong, 2022. "On Samuel’s p-value model and the Simes test under dependence," Statistics & Probability Letters, Elsevier, vol. 187(C).
    13. Meijer Rosa J. & Krebs Thijmen J.P. & Goeman Jelle J., 2015. "A region-based multiple testing method for hypotheses ordered in space or time," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(1), pages 1-19, February.
    14. Yoav Benjamini, 2010. "Discovering the false discovery rate," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 405-416, September.
    15. Zimmermann, Paul, 2021. "The role of the leverage effect in the price discovery process of credit markets," Journal of Economic Dynamics and Control, Elsevier, vol. 122(C).
    16. Kim Kyung In & Roquain Etienne & van de Wiel Mark A, 2010. "Spatial Clustering of Array CGH Features in Combination with Hierarchical Multiple Testing," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-25, November.
    17. Leonhard Held, 2020. "The harmonic mean χ2‐test to substantiate scientific findings," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(3), pages 697-708, June.
    18. Juan Antonio Villatoro-García & Jordi Martorell-Marugán & Daniel Toro-Domínguez & Yolanda Román-Montoya & Pedro Femia & Pedro Carmona-Sáez, 2022. "DExMA: An R Package for Performing Gene Expression Meta-Analysis with Missing Genes," Mathematics, MDPI, vol. 10(18), pages 1-15, September.
    19. Jelle J. Goeman & Stefan Böhringer, 2020. "Comments on: Hierarchical inference for genome-wide association studies by Jelle J. Goeman and Stefan Böhringer," Computational Statistics, Springer, vol. 35(1), pages 41-45, March.
    20. Gao Wang & Abhishek Sarkar & Peter Carbonetto & Matthew Stephens, 2020. "A simple new approach to variable selection in regression, with application to genetic fine mapping," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(5), pages 1273-1300, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:35:y:2020:i:1:d:10.1007_s00180-019-00941-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.