IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v77y2014i8p995-1011.html
   My bibliography  Save this article

A necessary and sufficient condition for justifying non-parametric likelihood with censored data

Author

Listed:
  • Qiqing Yu
  • Yuting Hsu
  • Kai Yu

Abstract

The non-parametric likelihood L(F) for censored data, including univariate or multivariate right-censored, doubly-censored, interval-censored, or masked competing risks data, is proposed by Peto (Appl Stat 22:86–91, 1973 ). It does not involve censoring distributions. In the literature, several noninformative conditions are proposed to justify L(F) so that the GMLE can be consistent (see, for examples, Self and Grossman in Biometrics 42:521–530 1986 , or Oller et al. in Can J Stat 32:315–326, 2004 ). We present the necessary and sufficient (N&S) condition so that $$L(F)$$ L ( F ) is equivalent to the full likelihood under the non-parametric set-up. The statement is false under the parametric set-up. Our condition is slightly different from the noninformative conditions in the literature. We present two applications to our cancer research data that satisfy the N&S condition but has dependent censoring. Copyright Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • Qiqing Yu & Yuting Hsu & Kai Yu, 2014. "A necessary and sufficient condition for justifying non-parametric likelihood with censored data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(8), pages 995-1011, November.
  • Handle: RePEc:spr:metrik:v:77:y:2014:i:8:p:995-1011
    DOI: 10.1007/s00184-014-0482-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00184-014-0482-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00184-014-0482-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qiqing Yu & G. Wong & Hao Qin & Jiaping Wang, 2012. "Random partition masking model for censored and masked competing risks data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(1), pages 69-85, February.
    2. Yu, Qiqing & Qin, Hao & Wang, Jiaping, 2010. "About conditional masking probability models," Statistics & Probability Letters, Elsevier, vol. 80(15-16), pages 1174-1179, August.
    3. Anton Schick & Qiqing Yu, 2000. "Consistency of the GMLE with Mixed Case Interval‐Censored Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(1), pages 45-55, March.
    4. Qiqing Yu & George Wong & Linxiong Li, 2001. "Asymptotic Properties of Self-Consistent Estimators with Mixed Interval-Censored Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(3), pages 469-486, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marta García-Bárzana & Ana Belén Ramos-Guajardo & Ana Colubi & Erricos J. Kontoghiorghes, 2020. "Multiple linear regression models for random intervals: a set arithmetic approach," Computational Statistics, Springer, vol. 35(2), pages 755-773, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuet-Yee Wong, Linda & Yu, Qiqing, 2007. "A bivariate interval censorship model for partnership formation," Journal of Multivariate Analysis, Elsevier, vol. 98(2), pages 370-383, February.
    2. Peijie Wang & Hui Zhao & Jianguo Sun, 2016. "Regression analysis of case K interval‐censored failure time data in the presence of informative censoring," Biometrics, The International Biometric Society, vol. 72(4), pages 1103-1112, December.
    3. Qiqing Yu & George Wong & Linxiong Li, 2001. "Asymptotic Properties of Self-Consistent Estimators with Mixed Interval-Censored Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(3), pages 469-486, September.
    4. Marra, Giampiero & Farcomeni, Alessio & Radice, Rosalba, 2021. "Link-based survival additive models under mixed censoring to assess risks of hospital-acquired infections," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    5. Wang, Yong, 2008. "Dimension-reduced nonparametric maximum likelihood computation for interval-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2388-2402, January.
    6. Jiahui Li & Qiqing Yu, 2016. "A consistent NPMLE of the joint distribution function with competing risks data under the dependent masking and right-censoring model," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(1), pages 63-99, January.
    7. Guadalupe Gómez & M. Calle & Ramon Oller, 2004. "Frequentist and Bayesian approaches for interval-censored data," Statistical Papers, Springer, vol. 45(2), pages 139-173, April.
    8. Pao-sheng Shen, 2011. "Nonparametric estimation with doubly censored and truncated data," Computational Statistics, Springer, vol. 26(1), pages 145-157, March.
    9. Li, Chenxi, 2016. "Cause-specific hazard regression for competing risks data under interval censoring and left truncation," Computational Statistics & Data Analysis, Elsevier, vol. 104(C), pages 197-208.
    10. Ma, Ling & Hu, Tao & Sun, Jianguo, 2016. "Cox regression analysis of dependent interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 79-90.
    11. Michael G. Hudgens & Marloes H. Maathuis & Peter B. Gilbert, 2007. "Nonparametric Estimation of the Joint Distribution of a Survival Time Subject to Interval Censoring and a Continuous Mark Variable," Biometrics, The International Biometric Society, vol. 63(2), pages 372-380, June.
    12. Ebrahimi, Nader & Shehadeh, Mahmoud, 2015. "Assessing the reliability of components with micro- and nano-structures when they are part a multi-scale system," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 13-20.
    13. Yu, Shaohua & Yu, Qiqing & Wong, George Y.C., 2006. "Consistency of the generalized MLE of a joint distribution function with multivariate interval-censored data," Journal of Multivariate Analysis, Elsevier, vol. 97(3), pages 720-732, March.
    14. P. G. Sankaran & S. Prasad, 2017. "An Additive Risks Regression Model For Middle-Censored Lifetime Data," Statistics in Transition New Series, Polish Statistical Association, vol. 18(3), pages 459-479, September.
    15. Sy Han Chiou & Gongjun Xu & Jun Yan & Chiung‐Yu Huang, 2018. "Semiparametric estimation of the accelerated mean model with panel count data under informative examination times," Biometrics, The International Biometric Society, vol. 74(3), pages 944-953, September.
    16. Li, Chenxi, 2016. "The Fine–Gray model under interval censored competing risks data," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 327-344.
    17. Pao-sheng Shen, 2022. "Nonparametric estimation for competing risks survival data subject to left truncation and interval censoring," Computational Statistics, Springer, vol. 37(1), pages 29-42, March.
    18. Michael G. Hudgens & Chenxi Li & Jason P. Fine, 2014. "Parametric likelihood inference for interval censored competing risks data," Biometrics, The International Biometric Society, vol. 70(1), pages 1-9, March.
    19. Pao-sheng Shen & Yingwei Peng & Hsin-Jen Chen & Chyong-Mei Chen, 2022. "Maximum likelihood estimation for length-biased and interval-censored data with a nonsusceptible fraction," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(1), pages 68-88, January.
    20. Sankaran P. G. & Prasad S., 2017. "An Additive Risks Regression Model for Middle-Censored Lifetime Data," Statistics in Transition New Series, Statistics Poland, vol. 18(3), pages 459-479, September.

    More about this item

    Keywords

    Right-censoring; Doubly-censoring; Masked competing risks data; Interval-censorship model; Multivariate censorship models; Primary 62 G05; Secondary 62 G20;
    All these keywords.

    JEL classification:

    • G20 - Financial Economics - - Financial Institutions and Services - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:77:y:2014:i:8:p:995-1011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.