IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v77y2014i4p451-468.html
   My bibliography  Save this article

Random weighting estimation of stable exponent

Author

Listed:
  • Gaoge Hu
  • Shesheng Gao
  • Yongmin Zhong
  • Chengfan Gu

Abstract

This paper presents a new random weighting method to estimation of the stable exponent. Assume that $$X_1, X_2, \ldots ,X_n$$ X 1 , X 2 , ... , X n is a sequence of independent and identically distributed random variables with $$\alpha $$ α -stable distribution G, where $$\alpha \in (0,2]$$ α ∈ ( 0 , 2 ] is the stable exponent. Denote the empirical distribution function of G by $$G_n$$ G n and the random weighting estimation of $$G_n$$ G n by $$H_n$$ H n . An empirical distribution function $$\widetilde{F}_n$$ F ~ n with U-statistic structure is defined based on the sum-preserving property of stable random variables. By minimizing the Cramer-von-Mises distance between $$H_n$$ H n and $${\widetilde{F}}_n$$ F ~ n , the random weighting estimation of $$\alpha $$ α is constructed in the sense of the minimum distance. The strong consistency and asymptotic normality of the random weighting estimation are also rigorously proved. Experimental results demonstrate that the proposed random weighting method can effectively estimate the stable exponent, resulting in higher estimation accuracy than the Zolotarev, Press, Fan and maximum likelihood methods. Copyright Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • Gaoge Hu & Shesheng Gao & Yongmin Zhong & Chengfan Gu, 2014. "Random weighting estimation of stable exponent," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(4), pages 451-468, May.
  • Handle: RePEc:spr:metrik:v:77:y:2014:i:4:p:451-468
    DOI: 10.1007/s00184-013-0448-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00184-013-0448-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00184-013-0448-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Haan, L. & Pereira, T. Themido, 1999. "Estimating the index of a stable distribution," Statistics & Probability Letters, Elsevier, vol. 41(1), pages 39-55, January.
    2. L. De Haan & L. Peng, 1998. "Comparison of tail index estimators," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 52(1), pages 60-70, March.
    3. Press, S. J., 1972. "Multivariate stable distributions," Journal of Multivariate Analysis, Elsevier, vol. 2(4), pages 444-462, December.
    4. Benoit Mandelbrot, 1963. "New Methods in Statistical Economics," Journal of Political Economy, University of Chicago Press, vol. 71(5), pages 421-421.
    5. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    6. M. Ivette Gomes & Laurens De Haan & Lígia Henriques Rodrigues, 2008. "Tail index estimation for heavy‐tailed models: accommodation of bias in weighted log‐excesses," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 31-52, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Igor Fedotenkov, 2020. "A Review of More than One Hundred Pareto-Tail Index Estimators," Statistica, Department of Statistics, University of Bologna, vol. 80(3), pages 245-299.
    2. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    3. Zhao, Zhibiao & Wu, Wei Biao, 2009. "Nonparametric inference of discretely sampled stable Lévy processes," Journal of Econometrics, Elsevier, vol. 153(1), pages 83-92, November.
    4. Tsionas, Efthymios G., 1998. "Monte Carlo inference in econometric models with symmetric stable disturbances," Journal of Econometrics, Elsevier, vol. 88(2), pages 365-401, November.
    5. Ercan Balaban & Jamal Ouenniche & Danae Politou, 2005. "A note on return distribution of UK stock indices," Applied Economics Letters, Taylor & Francis Journals, vol. 12(9), pages 573-576.
    6. Bao, Te & Diks, Cees & Li, Hao, 2018. "A generalized CAPM model with asymmetric power distributed errors with an application to portfolio construction," Economic Modelling, Elsevier, vol. 68(C), pages 611-621.
    7. Ayoub Ammy-Driss & Matthieu Garcin, 2021. "Efficiency of the financial markets during the COVID-19 crisis: time-varying parameters of fractional stable dynamics," Working Papers hal-02903655, HAL.
    8. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    9. Loredana Ureche-Rangau & Quiterie de Rorthays, 2009. "More on the volatility-trading volume relationship in emerging markets: The Chinese stock market," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(7), pages 779-799.
    10. Mulligan, Robert F., 2004. "Fractal analysis of highly volatile markets: an application to technology equities," The Quarterly Review of Economics and Finance, Elsevier, vol. 44(1), pages 155-179, February.
    11. Carmen López-Martín & Sonia Benito Muela & Raquel Arguedas, 2021. "Efficiency in cryptocurrency markets: new evidence," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 11(3), pages 403-431, September.
    12. Selçuk, Faruk & Gençay, Ramazan, 2006. "Intraday dynamics of stock market returns and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 375-387.
    13. Young Kim & Rosella Giacometti & Svetlozar Rachev & Frank Fabozzi & Domenico Mignacca, 2012. "Measuring financial risk and portfolio optimization with a non-Gaussian multivariate model," Annals of Operations Research, Springer, vol. 201(1), pages 325-343, December.
    14. Gencay, Ramazan & Selcuk, Faruk & Ulugulyagci, Abdurrahman, 2003. "High volatility, thick tails and extreme value theory in value-at-risk estimation," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 337-356, October.
    15. Igor Fedotenkov, 2013. "A bootstrap method to test for the existence of finite moments," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(2), pages 315-322, June.
    16. Yury Khokhlov & Victor Korolev & Alexander Zeifman, 2020. "Multivariate Scale-Mixed Stable Distributions and Related Limit Theorems," Mathematics, MDPI, vol. 8(5), pages 1-29, May.
    17. Anand, Abhinav & Li, Tiantian & Kurosaki, Tetsuo & Kim, Young Shin, 2016. "Foster–Hart optimal portfolios," Journal of Banking & Finance, Elsevier, vol. 68(C), pages 117-130.
    18. Sabiou M. Inoua & Vernon L. Smith, 2022. "Perishable goods versus re-tradable assets: A theoretical reappraisal of a fundamental dichotomy," Chapters, in: Sascha Füllbrunn & Ernan Haruvy (ed.), Handbook of Experimental Finance, chapter 15, pages 162-171, Edward Elgar Publishing.
    19. Mulligan, Robert F., 2010. "A fractal comparison of real and Austrian business cycle models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(11), pages 2244-2267.
    20. Koliai, Lyes, 2016. "Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 1-22.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:77:y:2014:i:4:p:451-468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.