IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v76y2013i7p919-935.html
   My bibliography  Save this article

Design-based distribution function estimation for stigmatized populations

Author

Listed:
  • Lucio Barabesi
  • Giancarlo Diana
  • Pier Perri

Abstract

In this paper, we discuss in a general framework the design-based estimation of population parameters when sensitive data are collected by randomized response techniques. We show in close detail the procedure for estimating the distribution function of a sensitive quantitative variable and how to estimate simultaneously the population prevalence of individuals bearing a stigmatizing attribute and the distribution function for the members belonging to the hidden group. The randomized response devices by Greenberg et al. (J Am Stat Assoc 66:243–250, 1971 ), Franklin (Commun Stat Theory Methods 18:489–505, 1989 ), and Singh et al. (Aust NZ J Stat 40:291–297 1998 ) are here considered as data-gathering tools. Copyright Springer-Verlag Berlin Heidelberg 2013

Suggested Citation

  • Lucio Barabesi & Giancarlo Diana & Pier Perri, 2013. "Design-based distribution function estimation for stigmatized populations," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(7), pages 919-935, October.
  • Handle: RePEc:spr:metrik:v:76:y:2013:i:7:p:919-935
    DOI: 10.1007/s00184-012-0424-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00184-012-0424-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00184-012-0424-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giancarlo Diana & Pier Perri, 2011. "A class of estimators for quantitative sensitive data," Statistical Papers, Springer, vol. 52(3), pages 633-650, August.
    2. Raghunath Arnab & Sarjinder Singh, 2002. "Estimation of the Size and Mean Value of a Stigmatized Characteristic of a Hidden Gang in a Finite Population: A Unified Approach," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(3), pages 659-666, September.
    3. Lucio Barabesi & Marzia Marcheselli, 2010. "Bayesian estimation of proportion and sensitivity level in randomized response procedures," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 72(1), pages 75-88, July.
    4. Tasos Christofides, 2005. "Randomized response technique for two sensitive characteristics at the same time," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 62(1), pages 53-63, September.
    5. Lucio Barabesi & Sara Franceschi & Marzia Marcheselli, 2012. "A randomized response procedure for multiple-sensitive questions," Statistical Papers, Springer, vol. 53(3), pages 703-718, August.
    6. Marzia Marcheselli & Lucio Barabesi, 2006. "A generalization of Huang's randomized response procedure for the estimation of population proportion and sensitivity level," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(2), pages 145-159.
    7. Giancarlo Diana & Pier Francesco Perri, 2010. "New scrambled response models for estimating the mean of a sensitive quantitative character," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(11), pages 1875-1890.
    8. Amitava Saha, 2007. "A simple randomized response technique in complex surveys," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 59-66.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shu-Ching Su & Stephen A. Sedory & Sarjinder Singh, 2015. "Kuk’s Model Adjusted for Protection and Efficiency," Sociological Methods & Research, , vol. 44(3), pages 534-551, August.
    2. Lucio Barabesi & Giancarlo Diana & Pier Perri, 2015. "Gini index estimation in randomized response surveys," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(1), pages 45-62, January.
    3. Pier Francesco Perri & Elvira Pelle & Manuela Stranges, 2016. "Estimating Induced Abortion and Foreign Irregular Presence Using the Randomized Response Crossed Model," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 129(2), pages 601-618, November.
    4. María del Mar Rueda & Beatriz Cobo & Antonio Arcos, 2021. "Regression Models in Complex Survey Sampling for Sensitive Quantitative Variables," Mathematics, MDPI, vol. 9(6), pages 1-13, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lucio Barabesi & Giancarlo Diana & Pier Perri, 2015. "Gini index estimation in randomized response surveys," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(1), pages 45-62, January.
    2. Kumari Priyanka & Pidugu Trisandhya & Richa Mittal, 2018. "Dealing sensitive characters on successive occasions through a general class of estimators using scrambled response techniques," METRON, Springer;Sapienza Università di Roma, vol. 76(2), pages 203-230, August.
    3. Kumari Priyanka & Pidugu Trisandhya, 2019. "Modelling Sensitive Issues On Successive Waves," Statistics in Transition New Series, Polish Statistical Association, vol. 20(1), pages 41-65, March.
    4. Shu-Hui Hsieh & Shen-Ming Lee & Su-Hao Tu, 2018. "Randomized response techniques for a multi-level attribute using a single sensitive question," Statistical Papers, Springer, vol. 59(1), pages 291-306, March.
    5. Heiko Groenitz, 2015. "Using prior information in privacy-protecting survey designs for categorical sensitive variables," Statistical Papers, Springer, vol. 56(1), pages 167-189, February.
    6. María del Mar García Rueda & Pier Francesco Perri & Beatriz Rodríguez Cobo, 2018. "Advances in estimation by the item sum technique using auxiliary information in complex surveys," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(3), pages 455-478, July.
    7. María del Mar Rueda & Beatriz Cobo & Antonio Arcos, 2021. "Regression Models in Complex Survey Sampling for Sensitive Quantitative Variables," Mathematics, MDPI, vol. 9(6), pages 1-13, March.
    8. Lucio Barabesi & Sara Franceschi & Marzia Marcheselli, 2012. "A randomized response procedure for multiple-sensitive questions," Statistical Papers, Springer, vol. 53(3), pages 703-718, August.
    9. Priyanka Kumari & Trisandhya Pidugu, 2019. "Modelling Sensitive Issues On Successive Waves," Statistics in Transition New Series, Statistics Poland, vol. 20(1), pages 41-65, March.
    10. Antonio Arcos & María del Rueda & Sarjinder Singh, 2015. "A generalized approach to randomised response for quantitative variables," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(3), pages 1239-1256, May.
    11. Mausumi Bose, 2015. "Respondent privacy and estimation efficiency in randomized response surveys for discrete-valued sensitive variables," Statistical Papers, Springer, vol. 56(4), pages 1055-1069, November.
    12. Hua Xin & Jianping Zhu & Tzong-Ru Tsai & Chieh-Yi Hung, 2021. "Hierarchical Bayesian Modeling and Randomized Response Method for Inferring the Sensitive-Nature Proportion," Mathematics, MDPI, vol. 9(19), pages 1-12, October.
    13. Liu, Yin & Tian, Guo-Liang, 2013. "A variant of the parallel model for sample surveys with sensitive characteristics," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 115-135.
    14. Truong-Nhat Le & Shen-Ming Lee & Phuoc-Loc Tran & Chin-Shang Li, 2023. "Randomized Response Techniques: A Systematic Review from the Pioneering Work of Warner (1965) to the Present," Mathematics, MDPI, vol. 11(7), pages 1-26, April.
    15. Giancarlo Diana & Pier Francesco Perri, 2012. "A calibration-based approach to sensitive data: a simulation study," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(1), pages 53-65, March.
    16. Lee, Cheon-Sig & Sedory, Stephen A. & Singh, Sarjinder, 2013. "Estimating at least seven measures of qualitative variables from a single sample using randomized response technique," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 399-409.
    17. Balgobin Nandram & Yuan Yu, 2019. "Bayesian Analysis of Sparse Counts Obtained From the Unrelated Question Design," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 8(5), pages 66-84, September.
    18. Giancarlo Diana & Pier Perri, 2011. "A class of estimators for quantitative sensitive data," Statistical Papers, Springer, vol. 52(3), pages 633-650, August.
    19. Andreas Quatember, 2012. "An extension of the standardized randomized response technique to a multi-stage setup," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(4), pages 475-484, November.
    20. Giancarlo Diana & Saba Riaz & Javid Shabbir, 2014. "Hansen and Hurwitz estimator with scrambled response on the second call," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(3), pages 596-611, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:76:y:2013:i:7:p:919-935. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.