New scrambled response models for estimating the mean of a sensitive quantitative character
Author
Abstract
Suggested Citation
DOI: 10.1080/02664760903186031
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Christopher Gjestvang & Sarjinder Singh, 2007. "Forced quantitative randomized response model: a new device," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 66(2), pages 243-257, September.
- Shaul K. Bar-Lev & Elizabeta Bobovitch & Benzion Boukai, 2004. "A note on randomized response models for quantitative data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 60(3), pages 255-260, November.
- Christopher R. Gjestvang & Sarjinder Singh, 2006. "A new randomized response model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 523-530, June.
- van den Hout, Ardo & van der Heijden, Peter G.M. & Gilchrist, Robert, 2007. "The logistic regression model with response variables subject to randomized response," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6060-6069, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Priyanka Kumari & Trisandhya Pidugu, 2019. "Modelling Sensitive Issues On Successive Waves," Statistics in Transition New Series, Statistics Poland, vol. 20(1), pages 41-65, March.
- María del Mar Rueda & Beatriz Cobo & Antonio Arcos, 2021. "Regression Models in Complex Survey Sampling for Sensitive Quantitative Variables," Mathematics, MDPI, vol. 9(6), pages 1-13, March.
- Lucio Barabesi & Giancarlo Diana & Pier Perri, 2013. "Design-based distribution function estimation for stigmatized populations," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(7), pages 919-935, October.
- Antonio Arcos & María del Rueda & Sarjinder Singh, 2015. "A generalized approach to randomised response for quantitative variables," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(3), pages 1239-1256, May.
- María del Mar García Rueda & Pier Francesco Perri & Beatriz Rodríguez Cobo, 2018. "Advances in estimation by the item sum technique using auxiliary information in complex surveys," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(3), pages 455-478, July.
- Lucio Barabesi & Giancarlo Diana & Pier Perri, 2015. "Gini index estimation in randomized response surveys," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(1), pages 45-62, January.
- Kumari Priyanka & Pidugu Trisandhya & Richa Mittal, 2018. "Dealing sensitive characters on successive occasions through a general class of estimators using scrambled response techniques," METRON, Springer;Sapienza Università di Roma, vol. 76(2), pages 203-230, August.
- Giancarlo Diana & Saba Riaz & Javid Shabbir, 2014. "Hansen and Hurwitz estimator with scrambled response on the second call," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(3), pages 596-611, March.
- Giancarlo Diana & Pier Francesco Perri, 2012. "A calibration-based approach to sensitive data: a simulation study," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(1), pages 53-65, March.
- Kumari Priyanka & Pidugu Trisandhya, 2019. "Modelling Sensitive Issues On Successive Waves," Statistics in Transition New Series, Polish Statistical Association, vol. 20(1), pages 41-65, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Antonio Arcos & María del Rueda & Sarjinder Singh, 2015. "A generalized approach to randomised response for quantitative variables," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(3), pages 1239-1256, May.
- María del Mar Rueda & Beatriz Cobo & Antonio Arcos, 2021. "Regression Models in Complex Survey Sampling for Sensitive Quantitative Variables," Mathematics, MDPI, vol. 9(6), pages 1-13, March.
- Shu-Hui Hsieh & Shen-Ming Lee & Chin-Shang Li & Su-Hao Tu, 2016. "An alternative to unrelated randomized response techniques with logistic regression analysis," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(4), pages 601-621, November.
- Singh, Sarjinder & Kim, Jong-Min, 2011. "A pseudo-empirical log-likelihood estimator using scrambled responses," Statistics & Probability Letters, Elsevier, vol. 81(3), pages 345-351, March.
- Oluseun Odumade & Sarjinder Singh, 2010. "An Alternative to the Bar-Lev, Bobovitch, and Boukai Randomized Response Model," Sociological Methods & Research, , vol. 39(2), pages 206-221, November.
- Truong-Nhat Le & Shen-Ming Lee & Phuoc-Loc Tran & Chin-Shang Li, 2023. "Randomized Response Techniques: A Systematic Review from the Pioneering Work of Warner (1965) to the Present," Mathematics, MDPI, vol. 11(7), pages 1-26, April.
- Kuo-Chung Huang, 2010. "Unbiased estimators of mean, variance and sensitivity level for quantitative characteristics in finite population sampling," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 71(3), pages 341-352, May.
- Housila P. Singh & Swarangi M. Gorey, 2017. "A Generalized Randomized Response Model," Statistics in Transition New Series, Polish Statistical Association, vol. 18(4), pages 669-686, December.
- Erum Zahid & Javid Shabbir & Sat Gupta & Ronald Onyango & Sadia Saeed, 2022. "A generalized class of estimators for sensitive variable in the presence of measurement error and non-response," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-19, January.
- Dihidar Kajal & Bhattacharya Manjima, 2017. "Estimating Sensitive Population Proportion Using a Combination of Binomial and Hypergeometric Randomized Responses by Direct and Inverse Mechanism," Statistics in Transition New Series, Statistics Poland, vol. 18(2), pages 193-210, June.
- María del Mar García Rueda & Pier Francesco Perri & Beatriz Rodríguez Cobo, 2018. "Advances in estimation by the item sum technique using auxiliary information in complex surveys," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(3), pages 455-478, July.
- Amitava Saha, 2011. "An optional scrambled randomized response technique for practical surveys," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 73(2), pages 139-149, March.
- Shu-Hui Hsieh & Shen-Ming Lee & Chin-Shang Li, 2022. "A Two-stage Multilevel Randomized Response Technique With Proportional Odds Models and Missing Covariates," Sociological Methods & Research, , vol. 51(1), pages 439-467, February.
- Lucio Barabesi & Marzia Marcheselli, 2010. "Bayesian estimation of proportion and sensitivity level in randomized response procedures," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 72(1), pages 75-88, July.
- Lucio Barabesi & Giancarlo Diana & Pier Perri, 2015. "Gini index estimation in randomized response surveys," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(1), pages 45-62, January.
- Shu-Ching Su & Stephen A. Sedory & Sarjinder Singh, 2015. "Kuk’s Model Adjusted for Protection and Efficiency," Sociological Methods & Research, , vol. 44(3), pages 534-551, August.
- Singh Housila P. & Gorey Swarangi M., 2017. "A Generalized Randomized Response Model," Statistics in Transition New Series, Statistics Poland, vol. 18(4), pages 669-686, December.
- Zawar Hussain & Mashail M. Al-Sobhi & Bander Al-Zahrani & Housila P. Singh & Tanveer A. Tarray, 2016. "Improved randomized response in additive scrambling models," Mathematical Population Studies, Taylor & Francis Journals, vol. 23(4), pages 205-221, October.
- Priyanka Kumari & Trisandhya Pidugu, 2019. "Modelling Sensitive Issues On Successive Waves," Statistics in Transition New Series, Statistics Poland, vol. 20(1), pages 41-65, March.
- Sarjinder Singh & Stephen A. Sedory, 2011. "Cramer-Rao Lower Bound of Variance in Randomized Response Sampling," Sociological Methods & Research, , vol. 40(3), pages 536-546, August.
More about this item
Keywords
auxiliary variable; class of estimators; privacy protection; sensitive variable;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:37:y:2010:i:11:p:1875-1890. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.