IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v73y2011i2p151-170.html
   My bibliography  Save this article

A more flexible joint latent model for longitudinal and survival time data

Author

Listed:
  • Chin-Tsang Chiang

Abstract

No abstract is available for this item.

Suggested Citation

  • Chin-Tsang Chiang, 2011. "A more flexible joint latent model for longitudinal and survival time data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 73(2), pages 151-170, March.
  • Handle: RePEc:spr:metrik:v:73:y:2011:i:2:p:151-170
    DOI: 10.1007/s00184-009-0270-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00184-009-0270-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00184-009-0270-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Torben Martinussen, 2002. "A flexible additive multiplicative hazard model," Biometrika, Biometrika Trust, vol. 89(2), pages 283-298, June.
    2. Lu Tian & David Zucker & L.J. Wei, 2005. "On the Cox Model With Time-Varying Regression Coefficients," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 172-183, March.
    3. Elizabeth R. Brown & Joseph G. Ibrahim & Victor DeGruttola, 2005. "A Flexible B-Spline Model for Multiple Longitudinal Biomarkers and Survival," Biometrics, The International Biometric Society, vol. 61(1), pages 64-73, March.
    4. Guo X. & Carlin B.P., 2004. "Separate and Joint Modeling of Longitudinal and Event Time Data Using Standard Computer Packages," The American Statistician, American Statistical Association, vol. 58, pages 16-24, February.
    5. Angela Winnett & Peter Sasieni, 2003. "Iterated residuals and time‐varying covariate effects in Cox regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 473-488, May.
    6. Jianhua Z. Huang, 2002. "Varying-coefficient models and basis function approximations for the analysis of repeated measurements," Biometrika, Biometrika Trust, vol. 89(1), pages 111-128, March.
    7. Murphy, S. A. & Sen, P. K., 1991. "Time-dependent coefficients in a Cox-type regression model," Stochastic Processes and their Applications, Elsevier, vol. 39(1), pages 153-180, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chin-Tsang Chiang & Mei-Cheng Wang, 2009. "Varying-coefficient model for the occurrence rate function of recurrent events," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(1), pages 197-213, March.
    2. Qu, Lianqiang & Song, Xinyuan & Sun, Liuquan, 2018. "Identification of local sparsity and variable selection for varying coefficient additive hazards models," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 119-135.
    3. Xiao Song & C. Y. Wang, 2008. "Semiparametric Approaches for Joint Modeling of Longitudinal and Survival Data with Time-Varying Coefficients," Biometrics, The International Biometric Society, vol. 64(2), pages 557-566, June.
    4. Osman, Muhtarjan & Ghosh, Sujit K., 2012. "Nonparametric regression models for right-censored data using Bernstein polynomials," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 559-573.
    5. Guoqing Diao & Donglin Zeng & Song Yang, 2013. "Efficient Semiparametric Estimation of Short-Term and Long-Term Hazard Ratios with Right-Censored Data," Biometrics, The International Biometric Society, vol. 69(4), pages 840-849, December.
    6. Torben Martinussen & Odd O. Aalen & Thomas H. Scheike, 2008. "The Mizon–Richard Encompassing Test for the Cox and Aalen Additive Hazards Models," Biometrics, The International Biometric Society, vol. 64(1), pages 164-171, March.
    7. Yanqing Sun & Rajeshwari Sundaram & Yichuan Zhao, 2009. "Empirical Likelihood Inference for the Cox Model with Time‐dependent Coefficients via Local Partial Likelihood," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(3), pages 444-462, September.
    8. X. Joan Hu & Rhonda J. Rosychuk, 2016. "Marginal regression analysis of recurrent events with coarsened censoring times," Biometrics, The International Biometric Society, vol. 72(4), pages 1113-1122, December.
    9. Anderl, Eva & Schumann, Jan Hendrik & Kunz, Werner, 2016. "Helping Firms Reduce Complexity in Multichannel Online Data: A New Taxonomy-Based Approach for Customer Journeys," Journal of Retailing, Elsevier, vol. 92(2), pages 185-203.
    10. Zahra Mansourvar & Torben Martinussen, 2017. "Estimation of average causal effect using the restricted mean residual lifetime as effect measure," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(3), pages 426-438, July.
    11. De la Cruz, Rolando & Meza, Cristian & Arribas-Gil, Ana & Carroll, Raymond J., 2016. "Bayesian regression analysis of data with random effects covariates from nonlinear longitudinal measurements," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 94-106.
    12. Jun Yan & Jian Huang, 2012. "Model Selection for Cox Models with Time-Varying Coefficients," Biometrics, The International Biometric Society, vol. 68(2), pages 419-428, June.
    13. Rizopoulos, Dimitris, 2016. "The R Package JMbayes for Fitting Joint Models for Longitudinal and Time-to-Event Data Using MCMC," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 72(i07).
    14. Jun Jin & Tiefeng Ma & Jiajia Dai, 2021. "New efficient spline estimation for varying-coefficient models with two-step knot number selection," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(5), pages 693-712, July.
    15. repec:jss:jstsof:35:i09 is not listed on IDEAS
    16. Fei Heng & Yanqing Sun & Seunggeun Hyun & Peter B. Gilbert, 2020. "Analysis of the time-varying Cox model for the cause-specific hazard functions with missing causes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(4), pages 731-760, October.
    17. Torben Martinussen & Christian Bressen Pipper, 2014. "Estimation of Causal Odds of Concordance using the Aalen Additive Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(1), pages 141-151, March.
    18. Huazhen Lin & Zhe Fei & Yi Li, 2016. "A Semiparametrically Efficient Estimator of the Time-Varying Effects for Survival Data with Time-Dependent Treatment," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 649-663, September.
    19. Yanqing Sun & Seunggeun Hyun & Peter Gilbert, 2008. "Testing and Estimation of Time-Varying Cause-Specific Hazard Ratios with Covariate Adjustment," Biometrics, The International Biometric Society, vol. 64(4), pages 1070-1079, December.
    20. Guoqing Diao & Anand N. Vidyashankar & Sarah Zohar & Sandrine Katsahian, 2021. "Competing Risks Model with Short-Term and Long-Term Covariate Effects for Cancer Studies," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(1), pages 142-159, April.
    21. Huazhen Lin & Hyokyoung G. Hong & Baoying Yang & Wei Liu & Yong Zhang & Gang-Zhi Fan & Yi Li, 2019. "Nonparametric Time-Varying Coefficient Models for Panel Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(3), pages 548-566, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:73:y:2011:i:2:p:151-170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.