IDEAS home Printed from https://ideas.repec.org/a/spr/stabio/v13y2021i1d10.1007_s12561-020-09288-x.html
   My bibliography  Save this article

Competing Risks Model with Short-Term and Long-Term Covariate Effects for Cancer Studies

Author

Listed:
  • Guoqing Diao

    (George Mason University)

  • Anand N. Vidyashankar

    (George Mason University)

  • Sarah Zohar

    (Sorbonne Université, Université de Paris)

  • Sandrine Katsahian

    (Sorbonne Université, Université de Paris
    CIC-EC 1418, Inserm, Hôpital Européen Georges-Pompidou)

Abstract

Patients are frequently exposed to failure from several mutually exclusive causes, leading to a competing risk setting. Standard methods concerning the effects of covariates on the cause-specific hazards assume constant hazard ratios across time. This assumption, however, is violated in several applications. To address this issue and test the effect of covariates on multiple risks, we develop a new regression model allowing for nonconstant hazard ratios over time. The proposed model allows explicit specification of the short-term and long-term covariate effects, which can be of clinical interest. We develop a statistically efficient nonparametric likelihood methodology for estimation and inference concerning the parameters of interest and compare it to the existing methods. We investigate the performances of the proposed methods using simulations and apply them to a European study on a registry cohort of patients with acute leukemia undergoing bone marrow transplantation. Our proposed model detects the differences in short-term and long-term risks of primary relapse between patients with and without acute lymphoblastic leukemia.

Suggested Citation

  • Guoqing Diao & Anand N. Vidyashankar & Sarah Zohar & Sandrine Katsahian, 2021. "Competing Risks Model with Short-Term and Long-Term Covariate Effects for Cancer Studies," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(1), pages 142-159, April.
  • Handle: RePEc:spr:stabio:v:13:y:2021:i:1:d:10.1007_s12561-020-09288-x
    DOI: 10.1007/s12561-020-09288-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12561-020-09288-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12561-020-09288-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song Yang & Ross Prentice, 2005. "Semiparametric analysis of short-term and long-term hazard ratios with two-sample survival data," Biometrika, Biometrika Trust, vol. 92(1), pages 1-17, March.
    2. Torben Martinussen & Thomas H. Scheike & Ib M. Skovgaard, 2002. "Efficient Estimation of Fixed and Time‐varying Covariate Effects in Multiplicative Intensity Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(1), pages 57-74, March.
    3. Guoqing Diao & Donglin Zeng & Song Yang, 2013. "Efficient Semiparametric Estimation of Short-Term and Long-Term Hazard Ratios with Right-Censored Data," Biometrics, The International Biometric Society, vol. 69(4), pages 840-849, December.
    4. Lu Tian & David Zucker & L.J. Wei, 2005. "On the Cox Model With Time-Varying Regression Coefficients," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 172-183, March.
    5. Zongwu Cai & Yanqing Sun, 2003. "Local Linear Estimation for Time‐Dependent Coefficients in Cox's Regression Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(1), pages 93-111, March.
    6. Murphy, S. A. & Sen, P. K., 1991. "Time-dependent coefficients in a Cox-type regression model," Stochastic Processes and their Applications, Elsevier, vol. 39(1), pages 153-180, October.
    7. Limin Peng & Jason P. Fine, 2007. "Regression Modeling of Semicompeting Risks Data," Biometrics, The International Biometric Society, vol. 63(1), pages 96-108, March.
    8. Limin Peng & Yijian Huang, 2007. "Survival analysis with temporal covariate effects," Biometrika, Biometrika Trust, vol. 94(3), pages 719-733.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guoqing Diao & Donglin Zeng & Song Yang, 2013. "Efficient Semiparametric Estimation of Short-Term and Long-Term Hazard Ratios with Right-Censored Data," Biometrics, The International Biometric Society, vol. 69(4), pages 840-849, December.
    2. Yanqing Sun & Rajeshwari Sundaram & Yichuan Zhao, 2009. "Empirical Likelihood Inference for the Cox Model with Time‐dependent Coefficients via Local Partial Likelihood," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(3), pages 444-462, September.
    3. Osman, Muhtarjan & Ghosh, Sujit K., 2012. "Nonparametric regression models for right-censored data using Bernstein polynomials," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 559-573.
    4. Huazhen Lin & Zhe Fei & Yi Li, 2016. "A Semiparametrically Efficient Estimator of the Time-Varying Effects for Survival Data with Time-Dependent Treatment," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 649-663, September.
    5. Yanqing Sun & Seunggeun Hyun & Peter Gilbert, 2008. "Testing and Estimation of Time-Varying Cause-Specific Hazard Ratios with Covariate Adjustment," Biometrics, The International Biometric Society, vol. 64(4), pages 1070-1079, December.
    6. Torben Martinussen & Odd O. Aalen & Thomas H. Scheike, 2008. "The Mizon–Richard Encompassing Test for the Cox and Aalen Additive Hazards Models," Biometrics, The International Biometric Society, vol. 64(1), pages 164-171, March.
    7. Qu, Lianqiang & Song, Xinyuan & Sun, Liuquan, 2018. "Identification of local sparsity and variable selection for varying coefficient additive hazards models," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 119-135.
    8. Xiao Song & C. Y. Wang, 2008. "Semiparametric Approaches for Joint Modeling of Longitudinal and Survival Data with Time-Varying Coefficients," Biometrics, The International Biometric Society, vol. 64(2), pages 557-566, June.
    9. Fei Heng & Yanqing Sun & Seunggeun Hyun & Peter B. Gilbert, 2020. "Analysis of the time-varying Cox model for the cause-specific hazard functions with missing causes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(4), pages 731-760, October.
    10. Bhattacharjee, Arnab, 2004. "Estimation in hazard regression models under ordered departures from proportionality," Computational Statistics & Data Analysis, Elsevier, vol. 47(3), pages 517-536, October.
    11. Torben Martinussen & Christian Bressen Pipper, 2014. "Estimation of Causal Odds of Concordance using the Aalen Additive Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(1), pages 141-151, March.
    12. Anderl, Eva & Schumann, Jan Hendrik & Kunz, Werner, 2016. "Helping Firms Reduce Complexity in Multichannel Online Data: A New Taxonomy-Based Approach for Customer Journeys," Journal of Retailing, Elsevier, vol. 92(2), pages 185-203.
    13. Zahra Mansourvar & Torben Martinussen, 2017. "Estimation of average causal effect using the restricted mean residual lifetime as effect measure," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(3), pages 426-438, July.
    14. Huazhen Lin & Hyokyoung G. Hong & Baoying Yang & Wei Liu & Yong Zhang & Gang-Zhi Fan & Yi Li, 2019. "Nonparametric Time-Varying Coefficient Models for Panel Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(3), pages 548-566, December.
    15. Hongyuan Cao & Mathew M. Churpek & Donglin Zeng & Jason P. Fine, 2015. "Analysis of the Proportional Hazards Model With Sparse Longitudinal Covariates," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1187-1196, September.
    16. Jun Yan & Jian Huang, 2012. "Model Selection for Cox Models with Time-Varying Coefficients," Biometrics, The International Biometric Society, vol. 68(2), pages 419-428, June.
    17. Thomas H. Scheike & Mei-Jie Zhang, 2003. "Extensions and Applications of the Cox-Aalen Survival Model," Biometrics, The International Biometric Society, vol. 59(4), pages 1036-1045, December.
    18. Chin-Tsang Chiang & Mei-Cheng Wang, 2009. "Varying-coefficient model for the occurrence rate function of recurrent events," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(1), pages 197-213, March.
    19. Arnab Bhattacharjee, 2005. "Models of Firm Dynamics and the Hazard Rate of Exits: Reconciling Theory and Evidence using Hazard Regression Models," Econometrics 0503021, University Library of Munich, Germany.
    20. Jun Jin & Tiefeng Ma & Jiajia Dai, 2021. "New efficient spline estimation for varying-coefficient models with two-step knot number selection," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(5), pages 693-712, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stabio:v:13:y:2021:i:1:d:10.1007_s12561-020-09288-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.