IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v4y2002i1d10.1023_a1015790929604.html
   My bibliography  Save this article

A Random-Discretization Based Monte Carlo Sampling Method and its Applications

Author

Listed:
  • James C. Fu

    (University of Manitoba)

  • Liqun Wang

    (University of Manitoba)

Abstract

Recently, several Monte Carlo methods, for example, Markov Chain Monte Carlo (MCMC), importance sampling and data-augmentation, have been developed for numerical sampling and integration in statistical inference, especially in Bayesian analysis. As dimension increases, problems of sampling and integration can become very difficult. In this manuscript, a simple numerical sampling based method is systematically developed, which is based on the concept of random discretization of the density function with respect to Lebesgue measure. This method requires the knowledge of the density function (up to a normalizing constant) only. In Bayesian context, this eliminates the “conjugate restriction” in choosing prior distributions, since functional forms of full conditionals of posterior distributions are not needed. Furthermore, this method is non-iterative, dimension-free, easy to implement and fast in computing time. Some benchmark examples in this area are used to check the efficiency and accuracy of the method. Numerical results demonstrate that this method performs well for all these examples, including an example of evaluating the small probability values of a high dimensional multivariate normal distribution. As a byproduct, this method also provides an easy way of computing maximum likelihood estimates and modes of posterior distributions.

Suggested Citation

  • James C. Fu & Liqun Wang, 2002. "A Random-Discretization Based Monte Carlo Sampling Method and its Applications," Methodology and Computing in Applied Probability, Springer, vol. 4(1), pages 5-25, March.
  • Handle: RePEc:spr:metcap:v:4:y:2002:i:1:d:10.1023_a:1015790929604
    DOI: 10.1023/A:1015790929604
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1015790929604
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1015790929604?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chib, Siddhartha & Greenberg, Edward, 1996. "Markov Chain Monte Carlo Simulation Methods in Econometrics," Econometric Theory, Cambridge University Press, vol. 12(3), pages 409-431, August.
    2. Mark J. Schervish, 1984. "Multivariate Normal Probabilities with Error Bound," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 33(1), pages 81-94, March.
    3. Evans, Michael & Swartz, Timothy, 2000. "Approximating Integrals via Monte Carlo and Deterministic Methods," OUP Catalogue, Oxford University Press, number 9780198502784.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio Punzo & Alessandro Zini, 2012. "Discrete approximations of continuous and mixed measures on a compact interval," Statistical Papers, Springer, vol. 53(3), pages 563-575, August.
    2. Liqun Wang & James Fu, 2007. "A practical sampling approach for a Bayesian mixture model with unknown number of components," Statistical Papers, Springer, vol. 48(4), pages 631-653, October.
    3. Wang, Liqun & Lee, Chel Hee, 2014. "Discretization-based direct random sample generation," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1001-1010.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alex Ilek & Tanya Suchoy & Nir Klein, 2006. "Estimating the premium implicit in the yields of Treasury Bills," Israel Economic Review, Bank of Israel, vol. 4(2), pages 53-83.
    2. Barnett, William A. & Serletis, Apostolos, 2008. "Consumer preferences and demand systems," Journal of Econometrics, Elsevier, vol. 147(2), pages 210-224, December.
    3. Eliana González & Luis F. Melo & Viviana Monroy & Brayan Rojas, 2009. "A Dynamic Factor Model For The Colombian Inflation," Borradores de Economia 5273, Banco de la Republica.
    4. Ana Beatriz Galvão & Michael T. Owyang, 2018. "Financial Stress Regimes and the Macroeconomy," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(7), pages 1479-1505, October.
    5. Hautsch, Nikolaus & Yang, Fuyu, 2012. "Bayesian inference in a Stochastic Volatility Nelson–Siegel model," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3774-3792.
    6. Will Davis & Alexander Gordan & Rusty Tchernis, 2021. "Measuring the spatial distribution of health rankings in the United States," Health Economics, John Wiley & Sons, Ltd., vol. 30(11), pages 2921-2936, November.
    7. Jouchi Nakajima & Yasuhiro Omori, 2007. "Leverage, Heavy-Tails and Correlated Jumps in Stochastic Volatility Models (Revised in January 2008; Published in "Computational Statistics and Data Analysis", 53-6, 2335-2353. April 2009. )," CARF F-Series CARF-F-107, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    8. Carmen Fernandez & Eduardo Ley & Mark F. J. Steel, 2001. "Model uncertainty in cross-country growth regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(5), pages 563-576.
    9. Francisco Peñaranda, 2004. "Are Vector Autoregressions an Accurate Model for Dynamic Asset Allocation?," Working Papers wp2004_0419, CEMFI.
    10. Strickland, Chris M. & Martin, Gael M. & Forbes, Catherine S., 2008. "Parameterisation and efficient MCMC estimation of non-Gaussian state space models," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2911-2930, February.
    11. Tsantas, N., 1995. "Stochastic analysis of a non-homogeneous Markov system," European Journal of Operational Research, Elsevier, vol. 85(3), pages 670-685, September.
    12. Chib, Siddhartha, 1998. "Estimation and comparison of multiple change-point models," Journal of Econometrics, Elsevier, vol. 86(2), pages 221-241, June.
    13. repec:jss:jstsof:33:i11 is not listed on IDEAS
    14. Sylvia Kaufmann, 2002. "Is there an asymmetric effect of monetary policy over time? A Bayesian analysis using Austrian data," Empirical Economics, Springer, vol. 27(2), pages 277-297.
    15. Dueker, Michael, 2006. "Kalman filtering with truncated normal state variables for Bayesian estimation of macroeconomic models," Economics Letters, Elsevier, vol. 93(1), pages 58-62, October.
    16. Chih‐Sheng Hsieh & Lung‐Fei Lee & Vincent Boucher, 2020. "Specification and estimation of network formation and network interaction models with the exponential probability distribution," Quantitative Economics, Econometric Society, vol. 11(4), pages 1349-1390, November.
    17. KIM, Jae-Young & PARK, Woong Yong, 2018. "Some Empirical Evidence on Models of the Fisher Relation: Post-Data Comparison," Discussion paper series HIAS-E-68, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.
    18. Jouchi Nakajima, 2008. "EGARCH and Stochastic Volatility: Modeling Jumps and Heavy-tails for Stock Returns," IMES Discussion Paper Series 08-E-23, Institute for Monetary and Economic Studies, Bank of Japan.
    19. Lennart F. Hoogerheide & Johan F. Kaashoek, 2004. "Functional Approximations to Likelihoods/Posterior Densities: A Neural Network Approach to Efficient Sampling," Computing in Economics and Finance 2004 74, Society for Computational Economics.
    20. Ho, Paul, 2023. "Global robust Bayesian analysis in large models," Journal of Econometrics, Elsevier, vol. 235(2), pages 608-642.
    21. Siddhartha Chib & Edward Greenberg & Yuxin Chen, 1998. "MCMC Methods for Fitting and Comparing Multinomial Response Models," Econometrics 9802001, University Library of Munich, Germany, revised 06 May 1998.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:4:y:2002:i:1:d:10.1023_a:1015790929604. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.