IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v27y2025i1d10.1007_s11009-024-10124-8.html
   My bibliography  Save this article

Quickest Change-point Detection Problems for Multidimensional Wiener Processes

Author

Listed:
  • Pavel V. Gapeev

    (London School of Economics, Department of Mathematics)

  • Yavor I. Stoev

    (London School of Economics, Department of Mathematics)

Abstract

We study the quickest change-point (disorder) detection problems for an observable multidimensional Wiener process with the constantly correlated components changing their drift rates at certain unobservable random (change-point) times. These problems seek to determine the times of alarms which should be as close as possible to the unknown change-point times at which some of the components have changed their drift rates. The optimal stopping times of alarm are shown to be the first times at which the appropriate posterior probability processes exit certain regions restricted by the stopping boundaries. We characterise the value functions and optimal boundaries as unique solutions to the associated free-boundary problems for partial differential equations. It is observed that the optimal stopping boundaries can also be uniquely specified by means of the equivalent nonlinear Fredholm integral equations in the class of continuous functions of bounded variation. We also provide estimates for the value functions and boundaries which are solutions to the appropriately constructed ordinary differential free-boundary problems.

Suggested Citation

  • Pavel V. Gapeev & Yavor I. Stoev, 2025. "Quickest Change-point Detection Problems for Multidimensional Wiener Processes," Methodology and Computing in Applied Probability, Springer, vol. 27(1), pages 1-25, March.
  • Handle: RePEc:spr:metcap:v:27:y:2025:i:1:d:10.1007_s11009-024-10124-8
    DOI: 10.1007/s11009-024-10124-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-024-10124-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-024-10124-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bayraktar, Erhan & Dayanik, Savas & Karatzas, Ioannis, 2005. "The standard Poisson disorder problem revisited," Stochastic Processes and their Applications, Elsevier, vol. 115(9), pages 1437-1450, September.
    2. Savas Dayanik & Semih Onur Sezer, 2006. "Compound Poisson Disorder Problem," Mathematics of Operations Research, INFORMS, vol. 31(4), pages 649-672, November.
    3. Erhan Bayraktar & Savas Dayanik, 2006. "Poisson Disorder Problem with Exponential Penalty for Delay," Mathematics of Operations Research, INFORMS, vol. 31(2), pages 217-233, May.
    4. Pavel V. Gapeev & Monique Jeanblanc, 2010. "Pricing And Filtering In A Two-Dimensional Dividend Switching Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 13(07), pages 1001-1017.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erhan Bayraktar & H. Poor, 2008. "Optimal time to change premiums," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 68(1), pages 125-158, August.
    2. Buonaguidi, B., 2022. "The disorder problem for diffusion processes with the ϵ-linear and expected total miss criteria," Statistics & Probability Letters, Elsevier, vol. 189(C).
    3. Bruno Buonaguidi, 2023. "Finite Horizon Sequential Detection with Exponential Penalty for the Delay," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 224-238, July.
    4. Krawiec, Michał & Palmowski, Zbigniew & Płociniczak, Łukasz, 2018. "Quickest drift change detection in Lévy-type force of mortality model," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 432-450.
    5. Savas Dayanik & Semih O Sezer, 2023. "Model Misspecification in Discrete Time Bayesian Online Change Detection," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-27, March.
    6. Pavel V. Gapeev, 2016. "Bayesian Switching Multiple Disorder Problems," Mathematics of Operations Research, INFORMS, vol. 41(3), pages 1108-1124, August.
    7. Savas Dayanik & Semih Onur Sezer, 2006. "Compound Poisson Disorder Problem," Mathematics of Operations Research, INFORMS, vol. 31(4), pages 649-672, November.
    8. Gapeev, Pavel V., 2020. "On the problems of sequential statistical inference for Wiener processes with delayed observations," LSE Research Online Documents on Economics 104072, London School of Economics and Political Science, LSE Library.
    9. Asaf Cohen & Eilon Solan, 2013. "Bandit Problems with Lévy Processes," Mathematics of Operations Research, INFORMS, vol. 38(1), pages 92-107, February.
    10. Pavel V. Gapeev & Hessah Al Motairi, 2018. "Perpetual American Defaultable Options in Models with Random Dividends and Partial Information," Risks, MDPI, vol. 6(4), pages 1-15, November.
    11. Savas Dayanik, 2010. "Wiener Disorder Problem with Observations at Fixed Discrete Time Epochs," Mathematics of Operations Research, INFORMS, vol. 35(4), pages 756-785, November.
    12. Ali Devin Sezer & Çağrı Haksöz, 2012. "Optimal Decision Rules for Product Recalls," Mathematics of Operations Research, INFORMS, vol. 37(3), pages 399-418, August.
    13. Bayraktar, Erhan & Ludkovski, Michael, 2009. "Sequential tracking of a hidden Markov chain using point process observations," Stochastic Processes and their Applications, Elsevier, vol. 119(6), pages 1792-1822, June.
    14. Erhan Bayraktar & Savas Dayanik, 2006. "Poisson Disorder Problem with Exponential Penalty for Delay," Mathematics of Operations Research, INFORMS, vol. 31(2), pages 217-233, May.
    15. Gapeev, Pavel V. & Jeanblanc, Monique, 2024. "On the construction of conditional probability densities in the Brownian and compound Poisson filtrations," LSE Research Online Documents on Economics 121059, London School of Economics and Political Science, LSE Library.
    16. Christensen, Sören & Irle, Albrecht, 2020. "The monotone case approach for the solution of certain multidimensional optimal stopping problems," Stochastic Processes and their Applications, Elsevier, vol. 130(4), pages 1972-1993.
    17. Pavel V. Gapeev, 2020. "On the problems of sequential statistical inference for Wiener processes with delayed observations," Statistical Papers, Springer, vol. 61(4), pages 1529-1544, August.
    18. Ekström, Erik & Milazzo, Alessandro, 2024. "A detection problem with a monotone observation rate," Stochastic Processes and their Applications, Elsevier, vol. 172(C).
    19. S. Cawston & L. Vostrikova, 2010. "$F$-divergence minimal equivalent martingale measures and optimal portfolios for exponential Levy models with a change-point," Papers 1004.3525, arXiv.org, revised Jun 2011.
    20. Gapeev, Pavel V. & Stoev, Yavor I., 2017. "On the Laplace transforms of the first exit times in one-dimensional non-affine jump–diffusion models," Statistics & Probability Letters, Elsevier, vol. 121(C), pages 152-162.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:27:y:2025:i:1:d:10.1007_s11009-024-10124-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.