IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v24y2022i2d10.1007_s11009-021-09881-7.html
   My bibliography  Save this article

Polynomial Series Expansions and Moment Approximations for Conditional Mean Risk Sharing of Insurance Losses

Author

Listed:
  • Michel Denuit

    (UCLouvain)

  • Christian Y. Robert

    (Laboratory in Finance, Insurance - LFA CREST - Center for Research in Economics and Statistics, ENSAE)

Abstract

This paper exploits the representation of the conditional mean risk sharing allocations in terms of size-biased transforms to derive effective approximations within insurance pools of limited size. Precisely, the probability density functions involved in this representation are expanded with respect to the Gamma density and its associated Laguerre orthonormal polynomials, or with respect to the Normal density and its associated Hermite polynomials when the size of the pool gets larger. Depending on the thickness of the tails of the loss distributions, the latter may be replaced with their Esscher transform (or exponential tilting) of negative order. The numerical method then consists in truncating the series expansions to a limited number of terms. This results in an approximation in terms of the first moments of the individual loss distributions. Compound Panjer-Katz sums are considered as an application. The proposed method is compared with the well-established Panjer recursive algorithm. It appears to provide the analyst with reliable approximations that can be used to tune system parameters, before performing exact calculations.

Suggested Citation

  • Michel Denuit & Christian Y. Robert, 2022. "Polynomial Series Expansions and Moment Approximations for Conditional Mean Risk Sharing of Insurance Losses," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 693-711, June.
  • Handle: RePEc:spr:metcap:v:24:y:2022:i:2:d:10.1007_s11009-021-09881-7
    DOI: 10.1007/s11009-021-09881-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-021-09881-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-021-09881-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Denuit, Michel, 2019. "Size-Biased Transform And Conditional Mean Risk Sharing, With Application To P2p Insurance And Tontines," ASTIN Bulletin, Cambridge University Press, vol. 49(3), pages 591-617, September.
    2. Sundt, Bjorn, 2003. "Some recursions for moments of compound distributions," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 487-496, December.
    3. Rob Kaas & Marc Goovaerts & Jan Dhaene & Michel Denuit, 2008. "Modern Actuarial Risk Theory," Springer Books, Springer, edition 2, number 978-3-540-70998-5, October.
    4. Denuit, Michel & Dhaene, Jan, 2012. "Convex order and comonotonic conditional mean risk sharing," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 265-270.
    5. Denuit, Michel, 2019. "Size-biased transform and conditional mean risk sharing, with application to P2P insurance and tontines," LIDAM Discussion Papers ISBA 2019010, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Joakim Munkhammar & Lars Mattsson & Jesper Rydén, 2017. "Polynomial probability distribution estimation using the method of moments," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-14, April.
    7. Denuit, Michel, 2019. "Size-biased transform and conditional mean risk sharing, with application to P2P insurance and tontines," LIDAM Reprints ISBA 2019038, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Denuit, Michel & Robert, Christian Y., 2023. "From risk reduction to risk elimination by conditional mean risk sharing of independent losses," Insurance: Mathematics and Economics, Elsevier, vol. 108(C), pages 46-59.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Denuit, Michel & Robert, Christian Y., 2021. "Polynomial series expansions and moment approximations for conditional mean risk sharing of insurance losses," LIDAM Discussion Papers ISBA 2021016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Denuit, M. & Robert, C.Y., 2020. "Ultimate behavior of conditional mean risk sharing for independent compound Panjer-Katz sums with gamma and Pareto severities," LIDAM Discussion Papers ISBA 2020014, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Blier-Wong, Christopher & Cossette, Hélène & Marceau, Etienne, 2023. "Risk aggregation with FGM copulas," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 102-120.
    4. Fallou Niakh, 2023. "A fixed point approach for computing actuarially fair Pareto optimal risk-sharing rules," Papers 2303.05421, arXiv.org, revised Jul 2023.
    5. Michel Denuit & Jan Dhaene & Christian Y. Robert, 2022. "Risk‐sharing rules and their properties, with applications to peer‐to‐peer insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 89(3), pages 615-667, September.
    6. Denuit, Michel & Ortega-Jimenez, Patricia & Robert, Christian Y., 2024. "No-sabotage under conditional mean risk sharing of dependent-by-mixture insurance losses," LIDAM Discussion Papers ISBA 2024019, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Michel Denuit & Christian Y. Robert, 2021. "Risk sharing under the dominant peer‐to‐peer property and casualty insurance business models," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 24(2), pages 181-205, June.
    8. Denuit, Michel & Robert, Christian Y., 2020. "Conditional tail expectation decomposition and conditional mean risk sharing for dependent and conditionally independent risks," LIDAM Discussion Papers ISBA 2020018, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Denuit, Michel & Robert, Christian Y., 2021. "Risk sharing under the dominant peer-to-peer property and casualty insurance business models," LIDAM Discussion Papers ISBA 2021001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. Denuit, Michel & Robert, Christian Y., 2023. "From risk reduction to risk elimination by conditional mean risk sharing of independent losses," Insurance: Mathematics and Economics, Elsevier, vol. 108(C), pages 46-59.
    11. Denuit, Michel & Robert, Christian Y., 2023. "Conditional mean risk sharing of independent discrete losses in large pools," LIDAM Discussion Papers ISBA 2023010, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    12. Denuit, Michel & Ortega-Jimenez, Patricia & Robert, Christian Y., 2024. "Conditional expectations given the sum of independent random variables with regularly varying densities," LIDAM Discussion Papers ISBA 2024006, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    13. Zhanyi Jiao & Steven Kou & Yang Liu & Ruodu Wang, 2022. "An axiomatic theory for anonymized risk sharing," Papers 2208.07533, arXiv.org, revised May 2023.
    14. Denuit, Michel, 2019. "Investing in your own and peers' risks: The simple analytics of p2p insurance," LIDAM Discussion Papers ISBA 2019028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    15. Denuit, Michel & Robert, Christian Y., 2023. "Endowment contingency funds for mutual aid and public financing," LIDAM Discussion Papers ISBA 2023009, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    16. Denuit, Michel & Robert, Christian Y., 2021. "Stop-loss protection for a large P2P insurance pool," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 210-233.
    17. Denuit, M. & Robert, C.Y., 2020. "From risk sharing to pure premium for a large number of heterogeneous losses," LIDAM Discussion Papers ISBA 2020015, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    18. Denuit, Michel & Robert, Christian Y., 2020. "From risk sharing to risk transfer: the analytics of collaborative insurance," LIDAM Discussion Papers ISBA 2020017, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    19. Hieber, Peter & Lucas, Nathalie, 2020. "Life-Care Tontines," LIDAM Discussion Papers ISBA 2020026, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    20. Denuit, Michel & Robert, Christian Y., 2020. "Risk reduction by conditional mean risk sharing with application to collaborative insurance," LIDAM Discussion Papers ISBA 2020024, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:24:y:2022:i:2:d:10.1007_s11009-021-09881-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.