IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v24y2022i4d10.1007_s11009-022-09970-1.html
   My bibliography  Save this article

Single-Index Importance Sampling with Stratification

Author

Listed:
  • Erik Hintz

    (University of Waterloo)

  • Marius Hofert

    (University of Waterloo)

  • Christiane Lemieux

    (University of Waterloo)

  • Yoshihiro Taniguchi

    (Canadian Imperial Bank of Commerce)

Abstract

In many stochastic problems, the output of interest depends on an input random vector mainly through a single random variable (or index) via an appropriate univariate transformation of the input. We exploit this feature by proposing an importance sampling method that makes rare events more likely by changing the distribution of the chosen index. Further variance reduction is guaranteed by combining this single-index importance sampling approach with stratified sampling. The dimension-reduction effect of single-index importance sampling also enhances the effectiveness of quasi-Monte Carlo methods. The proposed method applies to a wide range of financial or risk management problems. We demonstrate its efficiency for estimating large loss probabilities of a credit portfolio under a normal and t-copula model and show that our method outperforms the current standard for these problems.

Suggested Citation

  • Erik Hintz & Marius Hofert & Christiane Lemieux & Yoshihiro Taniguchi, 2022. "Single-Index Importance Sampling with Stratification," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 3049-3073, December.
  • Handle: RePEc:spr:metcap:v:24:y:2022:i:4:d:10.1007_s11009-022-09970-1
    DOI: 10.1007/s11009-022-09970-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-022-09970-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-022-09970-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cook, R. Dennis & Forzani, Liliana, 2009. "Likelihood-Based Sufficient Dimension Reduction," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 197-208.
    2. Rubinstein, Reuven Y., 1997. "Optimization of computer simulation models with rare events," European Journal of Operational Research, Elsevier, vol. 99(1), pages 89-112, May.
    3. Paul Glasserman & Jingyi Li, 2005. "Importance Sampling for Portfolio Credit Risk," Management Science, INFORMS, vol. 51(11), pages 1643-1656, November.
    4. Powell, James L & Stock, James H & Stoker, Thomas M, 1989. "Semiparametric Estimation of Index Coefficients," Econometrica, Econometric Society, vol. 57(6), pages 1403-1430, November.
    5. S. S. Lavenberg & P. D. Welch, 1981. "A Perspective on the Use of Control Variables to Increase the Efficiency of Monte Carlo Simulations," Management Science, INFORMS, vol. 27(3), pages 322-335, March.
    6. Kole, Erik & Koedijk, Kees & Verbeek, Marno, 2007. "Selecting copulas for risk management," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2405-2423, August.
    7. Achal Bassamboo & Sandeep Juneja & Assaf Zeevi, 2008. "Portfolio Credit Risk with Extremal Dependence: Asymptotic Analysis and Efficient Simulation," Operations Research, INFORMS, vol. 56(3), pages 593-606, June.
    8. Xiaoqun Wang, 2006. "On the Effects of Dimension Reduction Techniques on Some High-Dimensional Problems in Finance," Operations Research, INFORMS, vol. 54(6), pages 1063-1078, December.
    9. Stoker, Thomas M, 1986. "Consistent Estimation of Scaled Coefficients," Econometrica, Econometric Society, vol. 54(6), pages 1461-1481, November.
    10. Paul Glasserman & Philip Heidelberger & Perwez Shahabuddin, 2000. "Variance Reduction Techniques for Estimating Value-at-Risk," Management Science, INFORMS, vol. 46(10), pages 1349-1364, October.
    11. Jan Neddermeyer, 2011. "Non-parametric partial importance sampling for financial derivative pricing," Quantitative Finance, Taylor & Francis Journals, vol. 11(8), pages 1193-1206.
    12. Chan, Joshua C.C. & Kroese, Dirk P., 2010. "Efficient estimation of large portfolio loss probabilities in t-copula models," European Journal of Operational Research, Elsevier, vol. 205(2), pages 361-367, September.
    13. Pieter-Tjerk de Boer & Dirk Kroese & Shie Mannor & Reuven Rubinstein, 2005. "A Tutorial on the Cross-Entropy Method," Annals of Operations Research, Springer, vol. 134(1), pages 19-67, February.
    14. Sak, Halis & Hörmann, Wolfgang & Leydold, Josef, 2010. "Efficient risk simulations for linear asset portfolios in the t-copula model," European Journal of Operational Research, Elsevier, vol. 202(3), pages 802-809, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Zhenzhen & Kwok, Yue Kuen & Xu, Ziqing, 2024. "Efficient algorithms for calculating risk measures and risk contributions in copula credit risk models," Insurance: Mathematics and Economics, Elsevier, vol. 115(C), pages 132-150.
    2. Rongda Chen & Ze Wang & Lean Yu, 2017. "Importance Sampling for Credit Portfolio Risk with Risk Factors Having t-Copula," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(04), pages 1101-1124, July.
    3. İsmail Başoğlu & Wolfgang Hörmann & Halis Sak, 2018. "Efficient simulations for a Bernoulli mixture model of portfolio credit risk," Annals of Operations Research, Springer, vol. 260(1), pages 113-128, January.
    4. Sak Halis, 2010. "Increasing the number of inner replications of multifactor portfolio credit risk simulation in the t-copula model," Monte Carlo Methods and Applications, De Gruyter, vol. 16(3-4), pages 361-377, January.
    5. Sunggon Kim & Jisu Yu, 2023. "Stratified importance sampling for a Bernoulli mixture model of portfolio credit risk," Annals of Operations Research, Springer, vol. 322(2), pages 819-849, March.
    6. Tim J. Brereton & Dirk P. Kroese & Joshua C. Chan, 2012. "Monte Carlo Methods for Portfolio Credit Risk," ANU Working Papers in Economics and Econometrics 2012-579, Australian National University, College of Business and Economics, School of Economics.
    7. Mohamed A. Ayadi & Hatem Ben-Ameur & Nabil Channouf & Quang Khoi Tran, 2019. "NORTA for portfolio credit risk," Annals of Operations Research, Springer, vol. 281(1), pages 99-119, October.
    8. Cheng-Der Fuh & Chuan-Ju Wang, 2017. "Efficient Exponential Tilting for Portfolio Credit Risk," Papers 1711.03744, arXiv.org, revised Apr 2019.
    9. Hörmann, Wolfgang & Sak, Halis, 2010. "t-Copula generation for control variates," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(4), pages 782-790.
    10. Tang, Qihe & Tang, Zhaofeng & Yang, Yang, 2019. "Sharp asymptotics for large portfolio losses under extreme risks," European Journal of Operational Research, Elsevier, vol. 276(2), pages 710-722.
    11. Balaev, Alexey, 2014. "The copula based on multivariate t-distribution with vector of degrees of freedom," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 90-110.
    12. Tang, Qihe & Tong, Zhiwei & Yang, Yang, 2021. "Large portfolio losses in a turbulent market," European Journal of Operational Research, Elsevier, vol. 292(2), pages 755-769.
    13. Guangxin Jiang & L. Jeff Hong & Barry L. Nelson, 2020. "Online Risk Monitoring Using Offline Simulation," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 356-375, April.
    14. Ferrer, Alex & Casals, José & Sotoca, Sonia, 2016. "Efficient estimation of unconditional capital by Monte Carlo simulation," Finance Research Letters, Elsevier, vol. 16(C), pages 75-84.
    15. Kaido, Hiroaki, 2017. "Asymptotically Efficient Estimation Of Weighted Average Derivatives With An Interval Censored Variable," Econometric Theory, Cambridge University Press, vol. 33(5), pages 1218-1241, October.
    16. Gerardo Manzo & Antonio Picca, 2020. "The Impact of Sovereign Shocks," Management Science, INFORMS, vol. 66(7), pages 3113-3132, July.
    17. Plischke, Elmar & Borgonovo, Emanuele, 2019. "Copula theory and probabilistic sensitivity analysis: Is there a connection?," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1046-1059.
    18. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    19. Mattrand, C. & Bourinet, J.-M., 2014. "The cross-entropy method for reliability assessment of cracked structures subjected to random Markovian loads," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 171-182.
    20. Halbert White & Karim Chalak, 2013. "Identification and Identification Failure for Treatment Effects Using Structural Systems," Econometric Reviews, Taylor & Francis Journals, vol. 32(3), pages 273-317, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:24:y:2022:i:4:d:10.1007_s11009-022-09970-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.