IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v24y2022i4d10.1007_s11009-022-09958-x.html
   My bibliography  Save this article

On Some Distributional Properties of Subordinated Gaussian Random Fields

Author

Listed:
  • Robin Merkle

    (University of Stuttgart)

  • Andrea Barth

    (University of Stuttgart)

Abstract

Motivated by the subordinated Brownian motion, we define a new class of (in general discontinuous) random fields on higher-dimensional parameter domains: the subordinated Gaussian random field. We investigate the pointwise marginal distribution of the constructed random fields, derive a Lévy-Khinchin-type formula and semi-explicit formulas for the covariance function. Further, we study the pointwise stochastic regularity and present various numerical examples.

Suggested Citation

  • Robin Merkle & Andrea Barth, 2022. "On Some Distributional Properties of Subordinated Gaussian Random Fields," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2661-2688, December.
  • Handle: RePEc:spr:metcap:v:24:y:2022:i:4:d:10.1007_s11009-022-09958-x
    DOI: 10.1007/s11009-022-09958-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-022-09958-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-022-09958-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Buchmann, Boris & Lu, Kevin W. & Madan, Dilip B., 2020. "Self-decomposability of weak variance generalised gamma convolutions," Stochastic Processes and their Applications, Elsevier, vol. 130(2), pages 630-655.
    2. Igor Fedotenkov, 2014. "A note on the bootstrap method for testing the existence of finite moments," Statistica, Department of Statistics, University of Bologna, vol. 74(4), pages 447-453.
    3. Buchmann, Boris & Kaehler, Benjamin & Maller, Ross & Szimayer, Alexander, 2017. "Multivariate subordination using generalised Gamma convolutions with applications to Variance Gamma processes and option pricing," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2208-2242.
    4. Fedotenkov, Igor, 2015. "A simple nonparametric test for the existence of finite moments," MPRA Paper 66089, University Library of Munich, Germany.
    5. Igor Fedotenkov, 2013. "A bootstrap method to test for the existence of finite moments," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(2), pages 315-322, June.
    6. Wai Leong Ng & Chun Yip Yau, 2018. "Test for the existence of finite moments via bootstrap," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 30(1), pages 28-48, January.
    7. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    8. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandro Bucciol & Laura Cavalli & Igor Fedotenkov & Paolo Pertile & Veronica Polin & Nicola Sartor & Alessandro Sommacal, 2014. "A large scale OLG model for France, Italy and Sweden: assessing the interpersonal and intrapersonal redistributive effects of public policies," Working Papers 07/2014, University of Verona, Department of Economics.
    2. Fedotenkov, Igor, 2015. "A simple nonparametric test for the existence of finite moments," MPRA Paper 66089, University Library of Munich, Germany.
    3. Wai Leong Ng & Chun Yip Yau, 2018. "Test for the existence of finite moments via bootstrap," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 30(1), pages 28-48, January.
    4. Chen, Zhimin & Ibragimov, Rustam, 2019. "One country, two systems? The heavy-tailedness of Chinese A- and H- share markets," Emerging Markets Review, Elsevier, vol. 38(C), pages 115-141.
    5. Scheffknecht, Lukas & Geiger, Felix, 2011. "A behavioral macroeconomic model with endogenous boom-bust cycles and leverage dynamcis," FZID Discussion Papers 37-2011, University of Hohenheim, Center for Research on Innovation and Services (FZID).
    6. V. Alfi & L. Pietronero & A. Zaccaria, 2008. "Minimal Agent Based Model For The Origin And Self-Organization Of Stylized Facts In Financial Markets," Papers 0807.1888, arXiv.org.
    7. Hutson, Elaine & Kearney, Colm & Lynch, Margaret, 2008. "Volume and skewness in international equity markets," Journal of Banking & Finance, Elsevier, vol. 32(7), pages 1255-1268, July.
    8. Alexander Eastman & Brian Lucey, 2008. "Skewness and asymmetry in futures returns and volumes," Applied Financial Economics, Taylor & Francis Journals, vol. 18(10), pages 777-800.
    9. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: I. Empirical facts," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 991-1012.
    10. Ekaterina Morozova & Vladimir Panov, 2021. "Extreme Value Analysis for Mixture Models with Heavy-Tailed Impurity," Mathematics, MDPI, vol. 9(18), pages 1-24, September.
    11. Staccioli, Jacopo & Napoletano, Mauro, 2021. "An agent-based model of intra-day financial markets dynamics," Journal of Economic Behavior & Organization, Elsevier, vol. 182(C), pages 331-348.
    12. Igor Fedotenkov, 2013. "A bootstrap method to test for the existence of finite moments," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(2), pages 315-322, June.
    13. Anand, Abhinav & Li, Tiantian & Kurosaki, Tetsuo & Kim, Young Shin, 2016. "Foster–Hart optimal portfolios," Journal of Banking & Finance, Elsevier, vol. 68(C), pages 117-130.
    14. Danilo Delpini & Giacomo Bormetti, 2012. "Stochastic Volatility with Heterogeneous Time Scales," Papers 1206.0026, arXiv.org, revised Apr 2013.
    15. Schmitt, Noemi & Westerhoff, Frank, 2014. "Speculative behavior and the dynamics of interacting stock markets," Journal of Economic Dynamics and Control, Elsevier, vol. 45(C), pages 262-288.
    16. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.
    17. Shih-Kuei Lin & Ren-Her Wang & Cheng-Der Fuh, 2006. "Risk Management for Linear and Non-Linear Assets: A Bootstrap Method with Importance Resampling to Evaluate Value-at-Risk," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 13(3), pages 261-295, September.
    18. Sandrine Jacob Leal & Mauro Napoletano & Andrea Roventini & Giorgio Fagiolo, 2016. "Rock around the clock: An agent-based model of low- and high-frequency trading," Journal of Evolutionary Economics, Springer, vol. 26(1), pages 49-76, March.
    19. Tetsuya Takaishi, 2016. "Dynamical cross-correlation of multiple time series Ising model," Evolutionary and Institutional Economics Review, Springer, vol. 13(2), pages 455-468, December.
    20. Michele Vodret & Iacopo Mastromatteo & Bence Tóth & Michael Benzaquen, 2023. "Microfounding GARCH models and beyond: a Kyle-inspired model with adaptive agents," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 18(3), pages 599-625, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:24:y:2022:i:4:d:10.1007_s11009-022-09958-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.