IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v24y2022i3d10.1007_s11009-021-09908-z.html
   My bibliography  Save this article

Estimating the Logarithm of Characteristic Function and Stability Parameter for Symmetric Stable Laws

Author

Listed:
  • Jüri Lember

    (University of Tartu)

  • Annika Krutto

    (University of Oslo)

Abstract

Let $$X_1,\ldots ,X_n$$ X 1 , … , X n be an i.i.d. sample from symmetric stable distribution with stability parameter $$\alpha$$ α and scale parameter $$\gamma$$ γ . Let $$\varphi _n$$ φ n be the empirical characteristic function. We prove a uniform large deviation inequality: given preciseness $$\epsilon >0$$ ϵ > 0 and probability $$p\in (0,1)$$ p ∈ ( 0 , 1 ) , there exists universal (depending on $$\epsilon$$ ϵ and p but not depending on $$\alpha$$ α and $$\gamma$$ γ ) constant $$\bar{r}>0$$ r ¯ > 0 so that $$P\big (\sup _{u>0:r(u)\le \bar{r}}|r(u)-\hat{r}(u)|\ge \epsilon \big )\le p,$$ P ( sup u > 0 : r ( u ) ≤ r ¯ | r ( u ) - r ^ ( u ) | ≥ ϵ ) ≤ p , where $$r(u)=(u\gamma )^{\alpha }$$ r ( u ) = ( u γ ) α and $$\hat{r}(u)=-\ln |\varphi _n(u)|$$ r ^ ( u ) = - ln | φ n ( u ) | . As an applications of the result, we show how it can be used in estimation the unknown stability parameter $$\alpha$$ α .

Suggested Citation

  • Jüri Lember & Annika Krutto, 2022. "Estimating the Logarithm of Characteristic Function and Stability Parameter for Symmetric Stable Laws," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 2149-2167, September.
  • Handle: RePEc:spr:metcap:v:24:y:2022:i:3:d:10.1007_s11009-021-09908-z
    DOI: 10.1007/s11009-021-09908-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-021-09908-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-021-09908-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Press, S. J., 1972. "Multivariate stable distributions," Journal of Multivariate Analysis, Elsevier, vol. 2(4), pages 444-462, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krutto Annika & Haugdahl Nøst Therese & Thoresen Magne, 2024. "A heavy-tailed model for analyzing miRNA-seq raw read counts," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 23(1), pages 1-30.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Zhibiao & Wu, Wei Biao, 2009. "Nonparametric inference of discretely sampled stable Lévy processes," Journal of Econometrics, Elsevier, vol. 153(1), pages 83-92, November.
    2. Ayoub Ammy-Driss & Matthieu Garcin, 2021. "Efficiency of the financial markets during the COVID-19 crisis: time-varying parameters of fractional stable dynamics," Working Papers hal-02903655, HAL.
    3. Ayoub Ammy-Driss & Matthieu Garcin, 2020. "Efficiency of the financial markets during the COVID-19 crisis: time-varying parameters of fractional stable dynamics," Papers 2007.10727, arXiv.org, revised Nov 2021.
    4. Yves Dominicy & David Veredas, 2010. "The method of simulated quantiles," Working Papers ECARES 2010-008, ULB -- Universite Libre de Bruxelles.
    5. Medino, Ary V. & Lopes, Sílvia R.C. & Morgado, Rafael & Dorea, Chang C.Y., 2012. "Generalized Langevin equation driven by Lévy processes: A probabilistic, numerical and time series based approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 572-581.
    6. Yury Khokhlov & Victor Korolev & Alexander Zeifman, 2020. "Multivariate Scale-Mixed Stable Distributions and Related Limit Theorems," Mathematics, MDPI, vol. 8(5), pages 1-29, May.
    7. Tsionas, Efthymios G., 1998. "Monte Carlo inference in econometric models with symmetric stable disturbances," Journal of Econometrics, Elsevier, vol. 88(2), pages 365-401, November.
    8. Tsionas, Mike, 2012. "Simple techniques for likelihood analysis of univariate and multivariate stable distributions: with extensions to multivariate stochastic volatility and dynamic factor models," MPRA Paper 40966, University Library of Munich, Germany, revised 20 Aug 2012.
    9. Tsionas, Mike G., 2016. "Bayesian analysis of multivariate stable distributions using one-dimensional projections," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 185-193.
    10. Klebanov, Lev B. & Slámová, Lenka, 2013. "Integer valued stable random variables," Statistics & Probability Letters, Elsevier, vol. 83(6), pages 1513-1519.
    11. Peters, G.W. & Sisson, S.A. & Fan, Y., 2012. "Likelihood-free Bayesian inference for α-stable models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3743-3756.
    12. Mondher Bellalah & Marc Lavielle, 2002. "A Decomposition of Empirical Distributions with Applications to the Valuation of Derivative Assets," Multinational Finance Journal, Multinational Finance Journal, vol. 6(2), pages 99-130, June.
    13. Todorov, Viktor, 2019. "Nonparametric inference for the spectral measure of a bivariate pure-jump semimartingale," Stochastic Processes and their Applications, Elsevier, vol. 129(2), pages 419-451.
    14. Richard M. Duvall & Judith L. Quinn, 1981. "Skewness Preference In Stable Markets," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 4(3), pages 249-263, September.
    15. Naoto Kunitomo & Takashi Owada, 2004. "Empirical Likelihood Estimation of Levy Processes (Revised: March 2005)," CIRJE F-Series CIRJE-F-272, CIRJE, Faculty of Economics, University of Tokyo.
    16. Dominicy, Yves & Veredas, David, 2013. "The method of simulated quantiles," Journal of Econometrics, Elsevier, vol. 172(2), pages 235-247.
    17. Bielak, Łukasz & Grzesiek, Aleksandra & Janczura, Joanna & Wyłomańska, Agnieszka, 2021. "Market risk factors analysis for an international mining company. Multi-dimensional, heavy-tailed-based modelling," Resources Policy, Elsevier, vol. 74(C).
    18. Kotchoni, Rachidi, 2012. "Applications of the characteristic function-based continuum GMM in finance," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3599-3622.
    19. Bertrand, Philippe & Prigent, Jean-luc, 2011. "Omega performance measure and portfolio insurance," Journal of Banking & Finance, Elsevier, vol. 35(7), pages 1811-1823, July.
    20. Audrius Kabašinskas & Leonidas Sakalauskas & Ingrida Vaičiulytė, 2021. "An Analytical EM Algorithm for Sub-Gaussian Vectors," Mathematics, MDPI, vol. 9(9), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:24:y:2022:i:3:d:10.1007_s11009-021-09908-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.