IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v23y2021i4d10.1007_s11009-020-09821-x.html
   My bibliography  Save this article

Sequential Maximum Likelihood Estimation for the Squared Radial Ornstein-Uhlenbeck Process

Author

Listed:
  • Huantian Xie

    (Linyi University)

  • Nenghui Kuang

    (Hunan University of Science and Technology)

Abstract

In this paper, we study the properties of a sequential maximum likelihood estimator of the unknown parameter for the squared radial Ornstein-Uhlenbeck process. The estimator is proved to be closed, unbiased, normally distributed and strongly consistent. Lastly a simulation study is presented to illustrate the efficiency of the estimators.

Suggested Citation

  • Huantian Xie & Nenghui Kuang, 2021. "Sequential Maximum Likelihood Estimation for the Squared Radial Ornstein-Uhlenbeck Process," Methodology and Computing in Applied Probability, Springer, vol. 23(4), pages 1409-1417, December.
  • Handle: RePEc:spr:metcap:v:23:y:2021:i:4:d:10.1007_s11009-020-09821-x
    DOI: 10.1007/s11009-020-09821-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-020-09821-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-020-09821-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Fuqing & Jiang, Hui, 2009. "Moderate deviations for squared radial Ornstein-Uhlenbeck process," Statistics & Probability Letters, Elsevier, vol. 79(11), pages 1378-1386, June.
    2. J. Aquilina & L. C. G. Rogers, 2004. "The Squared Ornstein‐Uhlenbeck Market," Mathematical Finance, Wiley Blackwell, vol. 14(4), pages 487-513, October.
    3. Zani, Marguerite, 2002. "Large deviations for squared radial Ornstein-Uhlenbeck processes," Stochastic Processes and their Applications, Elsevier, vol. 102(1), pages 25-42, November.
    4. Nenghui Kuang & Huantian Xie, 2015. "Sequential Maximum Likelihood Estimation for the Hyperbolic Diffusion Process," Methodology and Computing in Applied Probability, Springer, vol. 17(2), pages 373-381, June.
    5. Bo, Lijun & Yang, Xuewei, 2012. "Sequential maximum likelihood estimation for reflected generalized Ornstein–Uhlenbeck processes," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1374-1382.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marie Roy de Chaumaray, 2018. "Moderate deviations for parameters estimation in a geometrically ergodic Heston process," Statistical Inference for Stochastic Processes, Springer, vol. 21(3), pages 553-567, October.
    2. Qingpei Zang & Lixin Zhang, 2019. "Asymptotic Behaviour of the Trajectory Fitting Estimator for Reflected Ornstein–Uhlenbeck Processes," Journal of Theoretical Probability, Springer, vol. 32(1), pages 183-201, March.
    3. Bercu, Bernard & Coutin, Laure & Savy, Nicolas, 2012. "Sharp large deviations for the non-stationary Ornstein–Uhlenbeck process," Stochastic Processes and their Applications, Elsevier, vol. 122(10), pages 3393-3424.
    4. Demni, N. & Zani, M., 2009. "Large deviations for statistics of the Jacobi process," Stochastic Processes and their Applications, Elsevier, vol. 119(2), pages 518-533, February.
    5. Gao, Fuqing & Jiang, Hui, 2009. "Moderate deviations for squared radial Ornstein-Uhlenbeck process," Statistics & Probability Letters, Elsevier, vol. 79(11), pages 1378-1386, June.
    6. Bercu, Bernard & Richou, Adrien, 2017. "Large deviations for the Ornstein–Uhlenbeck process without tears," Statistics & Probability Letters, Elsevier, vol. 123(C), pages 45-55.
    7. Li, Chenxu & Wu, Linjia, 2019. "Exact simulation of the Ornstein–Uhlenbeck driven stochastic volatility model," European Journal of Operational Research, Elsevier, vol. 275(2), pages 768-779.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:23:y:2021:i:4:d:10.1007_s11009-020-09821-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.