IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v19y2017i4d10.1007_s11009-017-9559-2.html
   My bibliography  Save this article

Reward Algorithms for Semi-Markov Processes

Author

Listed:
  • Dmitrii Silvestrov

    (Stockholm University)

  • Raimondo Manca

    (University “La Sapienza”)

Abstract

New algorithms for computing power moments of hitting times and accumulated rewards of hitting type for semi-Markov processes are developed. The algorithms are based on special techniques of sequential phase space reduction and recurrence relations connecting moments of rewards. Applications are discussed as well as possible generalizations of presented results and examples.

Suggested Citation

  • Dmitrii Silvestrov & Raimondo Manca, 2017. "Reward Algorithms for Semi-Markov Processes," Methodology and Computing in Applied Probability, Springer, vol. 19(4), pages 1191-1209, December.
  • Handle: RePEc:spr:metcap:v:19:y:2017:i:4:d:10.1007_s11009-017-9559-2
    DOI: 10.1007/s11009-017-9559-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-017-9559-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-017-9559-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D’Amico, Guglielmo & Petroni, Filippo, 2012. "A semi-Markov model for price returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4867-4876.
    2. D’Amico, Guglielmo & Petroni, Filippo & Prattico, Flavio, 2013. "First and second order semi-Markov chains for wind speed modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(5), pages 1194-1201.
    3. Fredrik Stenberg & Raimondo Manca & Dmitrii Silvestrov, 2007. "An Algorithmic Approach to Discrete Time Non-homogeneous Backward Semi-Markov Reward Processes with an Application to Disability Insurance," Methodology and Computing in Applied Probability, Springer, vol. 9(4), pages 497-519, December.
    4. Aleka A. Papadopoulou & George Tsaklidis & Sally McClean & Lalit Garg, 2012. "On the Moments and the Distribution of the Cost of a Semi Markov Model for Healthcare Systems," Methodology and Computing in Applied Probability, Springer, vol. 14(3), pages 717-737, September.
    5. Guglielmo D’Amico & Filippo Petroni & Flavio Prattico, 2015. "Performance Analysis of Second Order Semi-Markov Chains: An Application to Wind Energy Production," Methodology and Computing in Applied Probability, Springer, vol. 17(3), pages 781-794, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vlad Stefan Barbu & Nicolas Vergne, 2019. "Reliability and Survival Analysis for Drifting Markov Models: Modeling and Estimation," Methodology and Computing in Applied Probability, Springer, vol. 21(4), pages 1407-1429, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guglielmo D’Amico & Filippo Petroni & Flavio Prattico, 2015. "Performance Analysis of Second Order Semi-Markov Chains: An Application to Wind Energy Production," Methodology and Computing in Applied Probability, Springer, vol. 17(3), pages 781-794, September.
    2. Guglielmo D'Amico & Ada Lika & Filippo Petroni, 2019. "Risk Management of Pension Fund: A Model for Salary Evolution," IJFS, MDPI, vol. 7(3), pages 1-17, August.
    3. Maegebier, Alexander, 2013. "Valuation and risk assessment of disability insurance using a discrete time trivariate Markov renewal reward process," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 802-811.
    4. D׳Amico, Guglielmo & Petroni, Filippo & Prattico, Flavio, 2015. "Reliability measures for indexed semi-Markov chains applied to wind energy production," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 170-177.
    5. Yi, He & Cui, Lirong, 2017. "Distribution and availability for aggregated second-order semi-Markov ternary system with working time omission," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 50-60.
    6. Fang, Chen & Cui, Lirong, 2021. "Reliability evaluation for balanced systems with auto-balancing mechanisms," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    7. Guglielmo D'Amico & Filippo Petroni, 2013. "Multivariate high-frequency financial data via semi-Markov processes," Papers 1305.0436, arXiv.org.
    8. Yi, He & Cui, Lirong & Balakrishnan, Narayanaswamy, 2021. "New reliability indices for first- and second-order discrete-time aggregated semi-Markov systems with an application to TT&C system," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    9. Guglielmo D'Amico & Filippo Petroni, 2012. "Weighted-indexed semi-Markov models for modeling financial returns," Papers 1205.2551, arXiv.org, revised Jun 2012.
    10. Zacharias Kyritsis & Aleka Papadopoulou, 2017. "The Quality of Life Via Semi Markov Reward Modelling," Methodology and Computing in Applied Probability, Springer, vol. 19(4), pages 1029-1045, December.
    11. G. D'Amico & F. Petroni & F. Prattico, 2013. "Semi-Markov Models in High Frequency Finance: A Review," Papers 1312.3894, arXiv.org.
    12. Tang, Jie & Brouste, Alexandre & Tsui, Kwok Leung, 2015. "Some improvements of wind speed Markov chain modeling," Renewable Energy, Elsevier, vol. 81(C), pages 52-56.
    13. D’Amico Guglielmo & Petroni Filippo & Sobolewski Robert Adam, 2019. "Optimal Control of a Dispatchable Energy Source for Wind Energy Management," Stochastics and Quality Control, De Gruyter, vol. 34(1), pages 19-34, June.
    14. Petroni, Filippo & Serva, Maurizio, 2016. "Observability of market daily volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 838-842.
    15. Amanda S. Hering & Karen Kazor & William Kleiber, 2015. "A Markov-Switching Vector Autoregressive Stochastic Wind Generator for Multiple Spatial and Temporal Scales," Resources, MDPI, vol. 4(1), pages 1-23, February.
    16. Ma, Jinrui & Fouladirad, Mitra & Grall, Antoine, 2018. "Flexible wind speed generation model: Markov chain with an embedded diffusion process," Energy, Elsevier, vol. 164(C), pages 316-328.
    17. D’Amico, Guglielmo & Manca, Raimondo & Salvi, Giovanni, 2013. "A semi-Markov modulated interest rate model," Statistics & Probability Letters, Elsevier, vol. 83(9), pages 2094-2102.
    18. Guglielmo D’Amico & Fulvio Gismondi & Filippo Petroni, 2020. "Insurance Contracts for Hedging Wind Power Uncertainty," Mathematics, MDPI, vol. 8(8), pages 1-16, August.
    19. Lahmiri, Salim, 2016. "Interest rate next-day variation prediction based on hybrid feedforward neural network, particle swarm optimization, and multiresolution techniques," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 388-396.
    20. Guglielmo D'Amico & Filippo Petroni, 2020. "A micro-to-macro approach to returns, volumes and waiting times," Papers 2007.06262, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:19:y:2017:i:4:d:10.1007_s11009-017-9559-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.