IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v16y2014i2d10.1007_s11009-012-9314-7.html
   My bibliography  Save this article

Empirical Mark Covariance and Product Density Function of Stationary Marked Point Processes—A Survey on Asymptotic Results

Author

Listed:
  • Lothar Heinrich

    (Augsburg University)

  • Stella Klein

    (Augsburg University)

  • Martin Moser

    (Munich University of Technology)

Abstract

Marked point processes are stochastic models to describe random patterns of marked points {[X i ,M i ], i ≥ 1} in some bounded subset of the d-dimensional Euclidean space (usually d = 1, 2 or 3 in applications), where each point X i carries additional random information expressed as mark M i taking values in some metric space. To study the correlations between distinct points and between marks located at distinct points we use kernel-type estimators of the second-order product density and the mark covariance function of a spatially homogeneous marked point process. Both functions and their empirical counterparts are suitable characteristics to identify point process models by construction of statistical goodness-of-fit tests.

Suggested Citation

  • Lothar Heinrich & Stella Klein & Martin Moser, 2014. "Empirical Mark Covariance and Product Density Function of Stationary Marked Point Processes—A Survey on Asymptotic Results," Methodology and Computing in Applied Probability, Springer, vol. 16(2), pages 283-293, June.
  • Handle: RePEc:spr:metcap:v:16:y:2014:i:2:d:10.1007_s11009-012-9314-7
    DOI: 10.1007/s11009-012-9314-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-012-9314-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-012-9314-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Eckel & F. Fleischer & P. Grabarnik & V. Schmidt, 2008. "An investigation of the spatial correlations for relative purchasing power in Baden–Württemberg," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 92(2), pages 135-152, May.
    2. Yongtao Guan, 2006. "Tests for Independence between Marks and Points of a Marked Point Process," Biometrics, The International Biometric Society, vol. 62(1), pages 126-134, March.
    3. Pawlas, Zbynek, 2009. "Empirical distributions in marked point processes," Stochastic Processes and their Applications, Elsevier, vol. 119(12), pages 4194-4209, December.
    4. Shigeru Mase, 1996. "The threshold method for estimating total rainfall," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 48(2), pages 201-213, June.
    5. Martin Schlather & Paulo J. Ribeiro & Peter J. Diggle, 2004. "Detecting dependence between marks and locations of marked point processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 79-93, February.
    6. Hall, Peter, 1984. "Central limit theorem for integrated square error of multivariate nonparametric density estimators," Journal of Multivariate Analysis, Elsevier, vol. 14(1), pages 1-16, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pawlas, Zbynek, 2009. "Empirical distributions in marked point processes," Stochastic Processes and their Applications, Elsevier, vol. 119(12), pages 4194-4209, December.
    2. Jakub Staněk & Ondřej Šedivý & Viktor Beneš, 2014. "On Random Marked Sets with a Smaller Integer Dimension," Methodology and Computing in Applied Probability, Springer, vol. 16(2), pages 397-410, June.
    3. Ho, Lai Ping & Stoyan, D., 2008. "Modelling marked point patterns by intensity-marked Cox processes," Statistics & Probability Letters, Elsevier, vol. 78(10), pages 1194-1199, August.
    4. Jiří Dvořák & Tomáš Mrkvička & Jorge Mateu & Jonatan A. González, 2022. "Nonparametric Testing of the Dependence Structure Among Points–Marks–Covariates in Spatial Point Patterns," International Statistical Review, International Statistical Institute, vol. 90(3), pages 592-621, December.
    5. Matthias Eckardt & Mehdi Moradi, 2024. "Marked Spatial Point Processes: Current State and Extensions to Point Processes on Linear Networks," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(2), pages 346-378, June.
    6. Marcelo Fernandes & Breno Neri, 2010. "Nonparametric Entropy-Based Tests of Independence Between Stochastic Processes," Econometric Reviews, Taylor & Francis Journals, vol. 29(3), pages 276-306.
    7. Su, Liangjun, 2006. "A simple test for multivariate conditional symmetry," Economics Letters, Elsevier, vol. 93(3), pages 374-378, December.
    8. Whitney K. Newey & Frank Windmeijer, 2005. "GMM with many weak moment conditions," CeMMAP working papers CWP18/05, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    9. Ouimet, Frédéric & Tolosana-Delgado, Raimon, 2022. "Asymptotic properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    10. Su, Liangjun & Lu, Xun, 2013. "Nonparametric dynamic panel data models: Kernel estimation and specification testing," Journal of Econometrics, Elsevier, vol. 176(2), pages 112-133.
    11. Fernandes, Marcelo & Grammig, Joachim, 2005. "Nonparametric specification tests for conditional duration models," Journal of Econometrics, Elsevier, vol. 127(1), pages 35-68, July.
    12. repec:ebl:ecbull:v:3:y:2005:i:11:p:1-10 is not listed on IDEAS
    13. Hoderlein, Stefan & Su, Liangjun & White, Halbert & Yang, Thomas Tao, 2016. "Testing for monotonicity in unobservables under unconfoundedness," Journal of Econometrics, Elsevier, vol. 193(1), pages 183-202.
    14. Liu, Bo & Mojirsheibani, Majid, 2015. "On a weighted bootstrap approximation of the Lp norms of kernel density estimators," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 65-73.
    15. Stefania D'Amico, 2004. "Density Estimation and Combination under Model Ambiguity," Computing in Economics and Finance 2004 273, Society for Computational Economics.
    16. Gozalo, Pedro L. & Linton, Oliver B., 2001. "Testing additivity in generalized nonparametric regression models with estimated parameters," Journal of Econometrics, Elsevier, vol. 104(1), pages 1-48, August.
    17. Paula Saavedra-Nieves & Rosa M. Crujeiras, 2022. "Nonparametric estimation of directional highest density regions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(3), pages 761-796, September.
    18. repec:cte:werepe:we1211 is not listed on IDEAS
    19. Centorrino, Samuele & Parmeter, Christopher F., 2024. "Nonparametric estimation of stochastic frontier models with weak separability," Journal of Econometrics, Elsevier, vol. 238(2).
    20. White, Halbert & Hong, Yongmiao, 1999. "M-Testing Using Finite and Infinite Dimensional Parameter Estimators," University of California at San Diego, Economics Working Paper Series qt9qz123ng, Department of Economics, UC San Diego.
    21. Masayuki Hirukawa & Mari Sakudo, 2016. "Testing Symmetry of Unknown Densities via Smoothing with the Generalized Gamma Kernels," Econometrics, MDPI, vol. 4(2), pages 1-27, June.
    22. Heinrich Lothar & Klein Stella, 2011. "Central limit theorem for the integrated squared error of the empirical second-order product density and goodness-of-fit tests for stationary point processes," Statistics & Risk Modeling, De Gruyter, vol. 28(4), pages 359-387, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:16:y:2014:i:2:d:10.1007_s11009-012-9314-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.