IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v351y2005i1p40-50.html
   My bibliography  Save this article

Escape rates in periodically driven Markov processes

Author

Listed:
  • Schindler, Michael
  • Talkner, Peter
  • Hänggi, Peter

Abstract

We present an approximate analytical expression for escape rates of time-dependent driven stochastic processes with an absorbing boundary such as the driven leaky integrate-and-fire model for neural spiking. The novel approximation is based on a discrete state Markovian modeling of the full long-time dynamics with time-dependent rates. It is valid in a wide parameter regime beyond the restraining limits of weak driving (linear response) and/or weak noise. The scheme is carefully tested and yields excellent agreement with three different numerical methods based on the Langevin equation, the Fokker–Planck equation and an integral equation.

Suggested Citation

  • Schindler, Michael & Talkner, Peter & Hänggi, Peter, 2005. "Escape rates in periodically driven Markov processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 351(1), pages 40-50.
  • Handle: RePEc:eee:phsmap:v:351:y:2005:i:1:p:40-50
    DOI: 10.1016/j.physa.2004.12.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437104015481
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2004.12.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ebeling, Werner & Molgedey, Lutz & Reimann, Axel, 2000. "Stochastic urn models of innovation and search dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 599-612.
    2. Antonio Di Crescenzo & Luigi M. Ricciardi, 2001. "On a discrimination problem for a class of stochastic processes with ordered first‐passage times," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 17(2), pages 205-219, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Molini, A. & Talkner, P. & Katul, G.G. & Porporato, A., 2011. "First passage time statistics of Brownian motion with purely time dependent drift and diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 1841-1852.
    2. Aniello Buonocore & Luigia Caputo & Enrica Pirozzi & Luigi M. Ricciardi, 2011. "The First Passage Time Problem for Gauss-Diffusion Processes: Algorithmic Approaches and Applications to LIF Neuronal Model," Methodology and Computing in Applied Probability, Springer, vol. 13(1), pages 29-57, March.
    3. Duan, Wei-Long & Fang, Hui & Zeng, Chunhua, 2019. "The stability analysis of tumor-immune responses to chemotherapy system with gaussian white noises," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 96-102.
    4. Buonocore, A. & Caputo, L. & Nobile, A.G. & Pirozzi, E., 2014. "Gauss–Markov processes in the presence of a reflecting boundary and applications in neuronal models," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 799-809.
    5. Meier, Christian & Li, Lingfei & Zhang, Gongqiu, 2023. "Simulation of multidimensional diffusions with sticky boundaries via Markov chain approximation," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1292-1308.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:351:y:2005:i:1:p:40-50. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.