IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v11y2009i3d10.1007_s11009-008-9100-8.html
   My bibliography  Save this article

Measurement of Longevity Risk Using Bootstrapping for Lee–Carter and Generalised Linear Poisson Models of Mortality

Author

Listed:
  • S. Haberman

    (City University)

  • A. E. Renshaw

    (City University)

Abstract

This paper provides a comparative investigation of simulation strategies for measuring the longevity risk associated with predictions of mortality rates and derived estimates of life expectancy. The study considers the Lee–Carter framework and a generalised linear Poisson model for representing the dynamics of mortality, as well as enhancements that allow for joint modelling of the dispersion and the effect of using a negative binomial rather than a Poisson assumption.

Suggested Citation

  • S. Haberman & A. E. Renshaw, 2009. "Measurement of Longevity Risk Using Bootstrapping for Lee–Carter and Generalised Linear Poisson Models of Mortality," Methodology and Computing in Applied Probability, Springer, vol. 11(3), pages 443-461, September.
  • Handle: RePEc:spr:metcap:v:11:y:2009:i:3:d:10.1007_s11009-008-9100-8
    DOI: 10.1007/s11009-008-9100-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-008-9100-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-008-9100-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arthur Renshaw & Steven Haberman, 2003. "Lee–Carter mortality forecasting: a parallel generalized linear modelling approach for England and Wales mortality projections," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(1), pages 119-137, January.
    2. Hélène Cossette & Antoine Delwarde & Michel Denuit & Frédérick Guillot & Étienne Marceau, 2007. "Pension Plan Valuation and Mortality Projection," North American Actuarial Journal, Taylor & Francis Journals, vol. 11(2), pages 1-34.
    3. Shripad Tuljapurkar & Nan Li & Carl Boe, 2000. "A universal pattern of mortality decline in the G7 countries," Nature, Nature, vol. 405(6788), pages 789-792, June.
    4. Renshaw, A.E. & Haberman, S., 2008. "On simulation-based approaches to risk measurement in mortality with specific reference to Poisson Lee-Carter modelling," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 797-816, April.
    5. Renshaw, A.E. & Haberman, S., 2006. "A cohort-based extension to the Lee-Carter model for mortality reduction factors," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 556-570, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leng, Xuan & Peng, Liang, 2016. "Inference pitfalls in Lee–Carter model for forecasting mortality," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 58-65.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jackie Li & Leonie Tickle & Nick Parr, 2016. "A multi-population evaluation of the Poisson common factor model for projecting mortality jointly for both sexes," Journal of Population Research, Springer, vol. 33(4), pages 333-360, December.
    2. Han Lin Shang & Rob J Hyndman & Heather Booth, 2010. "A comparison of ten principal component methods for forecasting mortality rates," Monash Econometrics and Business Statistics Working Papers 8/10, Monash University, Department of Econometrics and Business Statistics.
    3. D’Amato, Valeria & Haberman, Steven & Piscopo, Gabriella & Russolillo, Maria, 2012. "Modelling dependent data for longevity projections," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 694-701.
    4. Hunt, Andrew & Villegas, Andrés M., 2015. "Robustness and convergence in the Lee–Carter model with cohort effects," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 186-202.
    5. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    6. Hatzopoulos, P. & Haberman, S., 2009. "A parameterized approach to modeling and forecasting mortality," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 103-123, February.
    7. Han Lin Shang & Heather Booth & Rob Hyndman, 2011. "Point and interval forecasts of mortality rates and life expectancy: A comparison of ten principal component methods," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 25(5), pages 173-214.
    8. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    9. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
    10. Neves, César & Fernandes, Cristiano & Hoeltgebaum, Henrique, 2017. "Five different distributions for the Lee–Carter model of mortality forecasting: A comparison using GAS models," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 48-57.
    11. Anja De Waegenaere & Bertrand Melenberg & Ralph Stevens, 2010. "Longevity Risk," De Economist, Springer, vol. 158(2), pages 151-192, June.
    12. Haberman, Steven & Renshaw, Arthur, 2011. "A comparative study of parametric mortality projection models," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 35-55, January.
    13. Jose Garrido & Xavier Milhaud & Anani Olympio & Max Popp, 2024. "Climate Risk and its Impact on Insurance [Risque climatique et impact en assurance]," Post-Print hal-04684634, HAL.
    14. repec:hum:wpaper:sfb649dp2009-015 is not listed on IDEAS
    15. Li, Johnny Siu-Hang, 2010. "Pricing longevity risk with the parametric bootstrap: A maximum entropy approach," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 176-186, October.
    16. Heather Booth & Rob Hyndman & Leonie Tickle & Piet de Jong, 2006. "Lee-Carter mortality forecasting: a multi-country comparison of variants and extensions," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 15(9), pages 289-310.
    17. Renshaw, A.E. & Haberman, S., 2008. "On simulation-based approaches to risk measurement in mortality with specific reference to Poisson Lee-Carter modelling," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 797-816, April.
    18. Ugofilippo Basellini & Søren Kjærgaard & Carlo Giovanni Camarda, 2020. "An age-at-death distribution approach to forecast cohort mortality," Working Papers axafx5_3agsuwaphvlfk, French Institute for Demographic Studies.
    19. Helena Chuliá & Montserrat Guillén & Jorge M. Uribe, 2015. "Mortality and Longevity Risks in the United Kingdom: Dynamic Factor Models and Copula-Functions," Working Papers 2015-03, Universitat de Barcelona, UB Riskcenter.
    20. de Jong, Piet & Tickle, Leonie & Xu, Jianhui, 2016. "Coherent modeling of male and female mortality using Lee–Carter in a complex number framework," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 130-137.
    21. Patrizio Vanella & Ugofilippo Basellini & Berit Lange, 2020. "Assessing Excess Mortality in Times of Pandemics Based on Principal Component Analysis of Weekly Mortality Data -- The Case of COVID-19," Working Papers axbhmxrs-o0viyh9z07m, French Institute for Demographic Studies.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:11:y:2009:i:3:d:10.1007_s11009-008-9100-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.