Option Pricing for Log-Symmetric Distributions of Returns
Author
Abstract
Suggested Citation
DOI: 10.1007/s11009-007-9038-2
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zinoviy Landsman & Emiliano Valdez, 2003. "Tail Conditional Expectations for Elliptical Distributions," North American Actuarial Journal, Taylor & Francis Journals, vol. 7(4), pages 55-71.
- Albert N. Shiryaev & Jan Kallsen, 2002. "The cumulant process and Esscher's change of measure," Finance and Stochastics, Springer, vol. 6(4), pages 397-428.
- Bardsley, Peter & Cashin, Paul, 1990.
"Underwriting Assistance To The Australian Wheat Industry - An Application Of Option Pricing Theory,"
Australian Journal of Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 34(3), pages 1-11, December.
- Peter Bardsley & Paul Cashin, 1990. "Underwriting Assistance To The Australian Wheat Industry — An Application Of Option Pricing Theory," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 34(3), pages 212-222, December.
- Blattberg, Robert C & Gonedes, Nicholas J, 1974. "A Comparison of the Stable and Student Distributions as Statistical Models for Stock Prices," The Journal of Business, University of Chicago Press, vol. 47(2), pages 244-280, April.
- Ritchey, Robert J, 1990. "Call Option Valuation for Discrete Normal Mixtures," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 13(4), pages 285-296, Winter.
- Calum G. Turvey, 1992. "Contingent Claim Pricing Models Implied by Agricultural Stabilization and Insurance Policies," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 40(2), pages 183-198, July.
- Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
- N. H. Bingham & Rudiger Kiesel, 2002. "Semi-parametric modelling in finance: theoretical foundations," Quantitative Finance, Taylor & Francis Journals, vol. 2(4), pages 241-250.
- Robert J. Ritchey, 1990. "Call Option Valuation For Discrete Normal Mixtures," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 13(4), pages 285-296, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Shushi, Tomer, 2019. "A note on the coefficients of elliptical random variables," Statistics & Probability Letters, Elsevier, vol. 152(C), pages 153-155.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
- Hosam Ki & Byungwook Choi & Kook‐Hyun Chang & Miyoung Lee, 2005. "Option pricing under extended normal distribution," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 25(9), pages 845-871, September.
- Carol Alexander & Andrew Scourse, 2004.
"Bivariate normal mixture spread option valuation,"
Quantitative Finance, Taylor & Francis Journals, vol. 4(6), pages 637-648.
- Carol Alexandra & Andrew Scourse, 2003. "Bivariate Normal Mixture Spread Option Valuation," ICMA Centre Discussion Papers in Finance icma-dp2003-15, Henley Business School, University of Reading.
- Mondher Bellalah & Marc Lavielle, 2002. "A Decomposition of Empirical Distributions with Applications to the Valuation of Derivative Assets," Multinational Finance Journal, Multinational Finance Journal, vol. 6(2), pages 99-130, June.
- J. A. Jiménez & V. Arunachalam & G. M. Serna, 2015. "Option Pricing Based On A Log–Skew–Normal Mixture," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(08), pages 1-22, December.
- Shushi, Tomer, 2019. "A note on the coefficients of elliptical random variables," Statistics & Probability Letters, Elsevier, vol. 152(C), pages 153-155.
- Sheri Markose & Amadeo Alentorn, 2005. "Option Pricing and the Implied Tail Index with the Generalized Extreme Value (GEV) Distribution," Computing in Economics and Finance 2005 397, Society for Computational Economics.
- Markose, Sheri M & Alentorn, Amadeo, 2005. "The Generalized Extreme Value (GEV) Distribution, Implied Tail Index and Option Pricing," Economics Discussion Papers 3726, University of Essex, Department of Economics.
- Bondarenko, Oleg, 2003. "Estimation of risk-neutral densities using positive convolution approximation," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 85-112.
- Alexander, Carol, 2004. "Normal mixture diffusion with uncertain volatility: Modelling short- and long-term smile effects," Journal of Banking & Finance, Elsevier, vol. 28(12), pages 2957-2980, December.
- Boes, M.J., 2006. "Index options : Pricing, implied densities and returns," Other publications TiSEM e9ed8a9f-2472-430a-b666-9, Tilburg University, School of Economics and Management.
- Yeap, Claudia & Kwok, Simon S. & Choy, S. T. Boris, 2016. "A Flexible Generalised Hyperbolic Option Pricing Model and its Special Cases," Working Papers 2016-14, University of Sydney, School of Economics.
- Valdez, Emiliano A. & Chernih, Andrew, 2003. "Wang's capital allocation formula for elliptically contoured distributions," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 517-532, December.
- Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013.
"Forecasting with Option-Implied Information,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656,
Elsevier.
- Peter Christoffersen & Kris Jacobs & Bo Young Chang, 2011. "Forecasting with Option Implied Information," CREATES Research Papers 2011-46, Department of Economics and Business Economics, Aarhus University.
- Hentati-Kaffel, R. & Prigent, J.-L., 2016.
"Optimal positioning in financial derivatives under mixture distributions,"
Economic Modelling, Elsevier, vol. 52(PA), pages 115-124.
- R. Hentati-Kaffel & J.L. Prigent, 2014. "Optimal Positioning in Financial Derivatives under Mixture Distributions," Working Papers 2014-347, Department of Research, Ipag Business School.
- Rania Hentati & Jean-Luc Prigent, 2016. "Optimal positioning in financial derivatives under mixture distributions," Post-Print hal-01299840, HAL.
- Rania Hentati & Jean-Luc Prigent, 2016. "Optimal positioning in financial derivatives under mixture distributions," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01299840, HAL.
- Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006.
"Pricing and Inference with Mixtures of Conditionally Normal Processes,"
Working Papers
2006-28, Center for Research in Economics and Statistics.
- Bertholon, H. & Monfort, A. & Pegoraro, F., 2007. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working papers 188, Banque de France.
- Richards, Timothy J. & Manfredo, Mark R., 2003. "Infrequent Shocks and Rating Revenue Insurance: A Contingent Claims Approach," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 28(2), pages 1-19, August.
- Pan, Ming-Shiun & Chan, Kam C. & Fok, Chi-Wing, 1995. "The distribution of currency futures price changes: A two-piece mixture of normals approach," International Review of Economics & Finance, Elsevier, vol. 4(1), pages 69-78.
- Wan, Li & Han, Liyan & Xu, Yang & Matousek, Roman, 2021. "Dynamic linkage between the Chinese and global stock markets: A normal mixture approach," Emerging Markets Review, Elsevier, vol. 49(C).
- Shi-jie Jiang & Mujun Lei & Cheng-Huang Chung, 2018. "An Improvement of Gain-Loss Price Bounds on Options Based on Binomial Tree and Market-Implied Risk-Neutral Distribution," Sustainability, MDPI, vol. 10(6), pages 1-17, June.
More about this item
Keywords
Martingale measure; Option price; Returns; Log-symmetric distribution; Mixture of normal distributions;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:11:y:2009:i:3:d:10.1007_s11009-007-9038-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.