IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v87y2018i1d10.1007_s00186-017-0604-2.html
   My bibliography  Save this article

A generalized approximation framework for fractional network flow and packing problems

Author

Listed:
  • Michael Holzhauser

    (University of Kaiserslautern)

  • Sven O. Krumke

    (University of Kaiserslautern)

Abstract

We generalize the fractional packing framework of Garg and Koenemann (SIAM J Comput 37(2):630–652, 2007) to the case of linear fractional packing problems over polyhedral cones. More precisely, we provide approximation algorithms for problems of the form $$\max \{c^T x : Ax \le b, x \in C \}$$ max { c T x : A x ≤ b , x ∈ C } , where the matrix A contains no negative entries and C is a cone that is generated by a finite set S of non-negative vectors. While the cone is allowed to require an exponential-sized representation, we assume that we can access it via one of three types of oracles. For each of these oracles, we present positive results for the approximability of the packing problem. In contrast to other frameworks, the presented one allows the use of arbitrary linear objective functions and can be applied to a large class of packing problems without much effort. In particular, our framework instantly allows to derive fast and simple fully polynomial-time approximation algorithms (FPTASs) for a large set of network flow problems, such as budget-constrained versions of traditional network flows, multicommodity flows, or generalized flows. Some of these FPTASs represent the first ones of their kind, while others match existing results but offer a much simpler proof.

Suggested Citation

  • Michael Holzhauser & Sven O. Krumke, 2018. "A generalized approximation framework for fractional network flow and packing problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(1), pages 19-50, February.
  • Handle: RePEc:spr:mathme:v:87:y:2018:i:1:d:10.1007_s00186-017-0604-2
    DOI: 10.1007/s00186-017-0604-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00186-017-0604-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00186-017-0604-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael Holzhauser & Sven O. Krumke & Clemens Thielen, 2016. "Budget-constrained minimum cost flows," Journal of Combinatorial Optimization, Springer, vol. 31(4), pages 1720-1745, May.
    2. Kevin D. Wayne, 2002. "A Polynomial Combinatorial Algorithm for Generalized Minimum Cost Flow," Mathematics of Operations Research, INFORMS, vol. 27(3), pages 445-459, August.
    3. Serge A. Plotkin & David B. Shmoys & Éva Tardos, 1995. "Fast Approximation Algorithms for Fractional Packing and Covering Problems," Mathematics of Operations Research, INFORMS, vol. 20(2), pages 257-301, May.
    4. Michael D. Grigoriadis & Leonid G. Khachiyan, 1996. "Coordination Complexity of Parallel Price-Directive Decomposition," Mathematics of Operations Research, INFORMS, vol. 21(2), pages 321-340, May.
    5. Nimrod Megiddo, 1979. "Combinatorial Optimization with Rational Objective Functions," Mathematics of Operations Research, INFORMS, vol. 4(4), pages 414-424, November.
    6. Refael Hassin, 1992. "Approximation Schemes for the Restricted Shortest Path Problem," Mathematics of Operations Research, INFORMS, vol. 17(1), pages 36-42, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klaus Jansen & Lorant Porkolab, 2001. "Improved Approximation Schemes for Scheduling Unrelated Parallel Machines," Mathematics of Operations Research, INFORMS, vol. 26(2), pages 324-338, May.
    2. José R. Correa & Asaf Levin, 2009. "Monotone Covering Problems with an Additional Covering Constraint," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 238-248, February.
    3. Mohamed Saad & Tamás Terlaky & Anthony Vannelli & Hu Zhang, 2008. "Packing trees in communication networks," Journal of Combinatorial Optimization, Springer, vol. 16(4), pages 402-423, November.
    4. Steffen Rebennack & Ashwin Arulselvan & Lily Elefteriadou & Panos M. Pardalos, 2010. "Complexity analysis for maximum flow problems with arc reversals," Journal of Combinatorial Optimization, Springer, vol. 19(2), pages 200-216, February.
    5. Bart Smeulders & Laurens Cherchye & Bram De Rock & Frits C. R. Spieksma, 2013. "The Money Pump as a Measure of Revealed Preference Violations: A Comment," Journal of Political Economy, University of Chicago Press, vol. 121(6), pages 1248-1258.
    6. Li, Jianping & Ge, Yu & He, Shuai & Lichen, Junran, 2014. "Approximation algorithms for constructing some required structures in digraphs," European Journal of Operational Research, Elsevier, vol. 232(2), pages 307-314.
    7. Shisheng Li & T.C.E. Cheng & C.T. Ng & Jinjiang Yuan, 2017. "Two‐agent scheduling on a single sequential and compatible batching machine," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(8), pages 628-641, December.
    8. Barbara Anthony & Vineet Goyal & Anupam Gupta & Viswanath Nagarajan, 2010. "A Plant Location Guide for the Unsure: Approximation Algorithms for Min-Max Location Problems," Mathematics of Operations Research, INFORMS, vol. 35(1), pages 79-101, February.
    9. Michael Zabarankin & Stan Uryasev & Robert Murphey, 2006. "Aircraft routing under the risk of detection," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(8), pages 728-747, December.
    10. Hassin, Refael & Sarid, Anna, 2018. "Operations research applications of dichotomous search," European Journal of Operational Research, Elsevier, vol. 265(3), pages 795-812.
    11. Li Guan & Jianping Li & Weidong Li & Junran Lichen, 2019. "Improved approximation algorithms for the combination problem of parallel machine scheduling and path," Journal of Combinatorial Optimization, Springer, vol. 38(3), pages 689-697, October.
    12. Amitai Armon & Iftah Gamzu & Danny Segev, 2014. "Mobile facility location: combinatorial filtering via weighted occupancy," Journal of Combinatorial Optimization, Springer, vol. 28(2), pages 358-375, August.
    13. Pursals, Salvador Casadesús & Garzón, Federico Garriga, 2009. "Optimal building evacuation time considering evacuation routes," European Journal of Operational Research, Elsevier, vol. 192(2), pages 692-699, January.
    14. Evgeny Shchepin & Nodari Vakhania, 2006. "An absolute approximation algorithm for scheduling unrelated machines," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(6), pages 502-507, September.
    15. Michael Holzhauser & Sven O. Krumke & Clemens Thielen, 2016. "Budget-constrained minimum cost flows," Journal of Combinatorial Optimization, Springer, vol. 31(4), pages 1720-1745, May.
    16. Jiaju Miao & Pawel Polak, 2023. "Online Ensemble of Models for Optimal Predictive Performance with Applications to Sector Rotation Strategy," Papers 2304.09947, arXiv.org.
    17. Jianzhong Zhang & Zhenhong Liu, 2002. "A General Model of Some Inverse Combinatorial Optimization Problems and Its Solution Method Under l ∞ Norm," Journal of Combinatorial Optimization, Springer, vol. 6(2), pages 207-227, June.
    18. Evgeny Gurevsky & Sergey Kovalev & Mikhail Y. Kovalyov, 2021. "Min-max controllable risk problems," 4OR, Springer, vol. 19(1), pages 93-101, March.
    19. Sergio Cabello, 2023. "Faster distance-based representative skyline and k-center along pareto front in the plane," Journal of Global Optimization, Springer, vol. 86(2), pages 441-466, June.
    20. Andrés Gómez & Oleg A. Prokopyev, 2021. "A Mixed-Integer Fractional Optimization Approach to Best Subset Selection," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 551-565, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:87:y:2018:i:1:d:10.1007_s00186-017-0604-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.