IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v84y2016i2d10.1007_s00186-016-0554-0.html
   My bibliography  Save this article

Equivalence between polyhedral projection, multiple objective linear programming and vector linear programming

Author

Listed:
  • Andreas Löhne

    (Friedrich Schiller University Jena)

  • Benjamin Weißing

    (Friedrich Schiller University Jena)

Abstract

Let a polyhedral convex set be given by a finite number of linear inequalities and consider the problem to project this set onto a subspace. This problem, called polyhedral projection problem, is shown to be equivalent to multiple objective linear programming. The number of objectives of the multiple objective linear program is by one higher than the dimension of the projected polyhedron. The result implies that an arbitrary vector linear program (with arbitrary polyhedral ordering cone) can be solved by solving a multiple objective linear program (i.e. a vector linear program with the standard ordering cone) with one additional objective space dimension.

Suggested Citation

  • Andreas Löhne & Benjamin Weißing, 2016. "Equivalence between polyhedral projection, multiple objective linear programming and vector linear programming," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(2), pages 411-426, October.
  • Handle: RePEc:spr:mathme:v:84:y:2016:i:2:d:10.1007_s00186-016-0554-0
    DOI: 10.1007/s00186-016-0554-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00186-016-0554-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00186-016-0554-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dauer, Jerald P. & Liu, Yi-Hsin, 1990. "Solving multiple objective linear programs in objective space," European Journal of Operational Research, Elsevier, vol. 46(3), pages 350-357, June.
    2. C. N. Jones & E. C. Kerrigan & J. M. Maciejowski, 2008. "On Polyhedral Projection and Parametric Programming," Journal of Optimization Theory and Applications, Springer, vol. 138(2), pages 207-220, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacinto Martín & Concha Bielza & David Ríos Insua, 2005. "Approximating nondominated sets in continuous multiobjective optimization problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(5), pages 469-480, August.
    2. H. P. Benson & E. Sun, 2000. "Outcome Space Partition of the Weight Set in Multiobjective Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 105(1), pages 17-36, April.
    3. Victor V. Podinovski & Robert G. Chambers & Kazim Baris Atici & Iryna D. Deineko, 2016. "Marginal Values and Returns to Scale for Nonparametric Production Frontiers," Operations Research, INFORMS, vol. 64(1), pages 236-250, February.
    4. Löhne, Andreas & Weißing, Benjamin, 2017. "The vector linear program solver Bensolve – notes on theoretical background," European Journal of Operational Research, Elsevier, vol. 260(3), pages 807-813.
    5. J. Fülöp & L. D. Muu, 2000. "Branch-and-Bound Variant of an Outcome-Based Algorithm for Optimizing over the Efficient Set of a Bicriteria Linear Programming Problem," Journal of Optimization Theory and Applications, Springer, vol. 105(1), pages 37-54, April.
    6. Harold P. Benson & Serpil Sayin, 1997. "Towards finding global representations of the efficient set in multiple objective mathematical programming," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(1), pages 47-67, February.
    7. Yifan, Zhou & Wei, Hu & Le, Zheng & Yong, Min & Lei, Chen & Zongxiang, Lu & Ling, Dong, 2020. "Power and energy flexibility of district heating system and its application in wide-area power and heat dispatch," Energy, Elsevier, vol. 190(C).
    8. H. P. Benson, 1998. "Hybrid Approach for Solving Multiple-Objective Linear Programs in Outcome Space," Journal of Optimization Theory and Applications, Springer, vol. 98(1), pages 17-35, July.
    9. Alves, Maria João & Henggeler Antunes, Carlos, 2022. "A new exact method for linear bilevel problems with multiple objective functions at the lower level," European Journal of Operational Research, Elsevier, vol. 303(1), pages 312-327.
    10. Loonen, Willem & Heuberger, Peter S.C. & Bakema, Aldrik H. & Schot, Paul, 2006. "Application of a genetic algorithm to minimize agricultural nitrogen deposition in nature reserves," Agricultural Systems, Elsevier, vol. 88(2-3), pages 360-375, June.
    11. Jiang, Yunpeng & Ren, Zhouyang & Lu, Chunhao & Li, Hui & Yang, Zhixue, 2024. "A region-based low-carbon operation analysis method for integrated electricity-hydrogen-gas systems," Applied Energy, Elsevier, vol. 355(C).
    12. Benson, Harold P. & Sun, Erjiang, 2002. "A weight set decomposition algorithm for finding all efficient extreme points in the outcome set of a multiple objective linear program," European Journal of Operational Research, Elsevier, vol. 139(1), pages 26-41, May.
    13. Dauer, Jerald P. & Gallagher, Richard J., 1996. "A combined constraint-space, objective-space approach for determining high-dimensional maximal efficient faces of multiple objective linear programs," European Journal of Operational Research, Elsevier, vol. 88(2), pages 368-381, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:84:y:2016:i:2:d:10.1007_s00186-016-0554-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.