IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v46y1990i3p350-357.html
   My bibliography  Save this article

Solving multiple objective linear programs in objective space

Author

Listed:
  • Dauer, Jerald P.
  • Liu, Yi-Hsin

Abstract

No abstract is available for this item.

Suggested Citation

  • Dauer, Jerald P. & Liu, Yi-Hsin, 1990. "Solving multiple objective linear programs in objective space," European Journal of Operational Research, Elsevier, vol. 46(3), pages 350-357, June.
  • Handle: RePEc:eee:ejores:v:46:y:1990:i:3:p:350-357
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0377-2217(90)90010-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Loonen, Willem & Heuberger, Peter S.C. & Bakema, Aldrik H. & Schot, Paul, 2006. "Application of a genetic algorithm to minimize agricultural nitrogen deposition in nature reserves," Agricultural Systems, Elsevier, vol. 88(2-3), pages 360-375, June.
    2. Andreas Löhne & Benjamin Weißing, 2016. "Equivalence between polyhedral projection, multiple objective linear programming and vector linear programming," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(2), pages 411-426, October.
    3. Jacinto Martín & Concha Bielza & David Ríos Insua, 2005. "Approximating nondominated sets in continuous multiobjective optimization problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(5), pages 469-480, August.
    4. Benson, Harold P. & Sun, Erjiang, 2002. "A weight set decomposition algorithm for finding all efficient extreme points in the outcome set of a multiple objective linear program," European Journal of Operational Research, Elsevier, vol. 139(1), pages 26-41, May.
    5. H. P. Benson, 1998. "Hybrid Approach for Solving Multiple-Objective Linear Programs in Outcome Space," Journal of Optimization Theory and Applications, Springer, vol. 98(1), pages 17-35, July.
    6. Dauer, Jerald P. & Gallagher, Richard J., 1996. "A combined constraint-space, objective-space approach for determining high-dimensional maximal efficient faces of multiple objective linear programs," European Journal of Operational Research, Elsevier, vol. 88(2), pages 368-381, January.
    7. H. P. Benson & E. Sun, 2000. "Outcome Space Partition of the Weight Set in Multiobjective Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 105(1), pages 17-36, April.
    8. J. Fülöp & L. D. Muu, 2000. "Branch-and-Bound Variant of an Outcome-Based Algorithm for Optimizing over the Efficient Set of a Bicriteria Linear Programming Problem," Journal of Optimization Theory and Applications, Springer, vol. 105(1), pages 37-54, April.
    9. Harold P. Benson & Serpil Sayin, 1997. "Towards finding global representations of the efficient set in multiple objective mathematical programming," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(1), pages 47-67, February.
    10. Alves, Maria João & Henggeler Antunes, Carlos, 2022. "A new exact method for linear bilevel problems with multiple objective functions at the lower level," European Journal of Operational Research, Elsevier, vol. 303(1), pages 312-327.
    11. Löhne, Andreas & Weißing, Benjamin, 2017. "The vector linear program solver Bensolve – notes on theoretical background," European Journal of Operational Research, Elsevier, vol. 260(3), pages 807-813.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:46:y:1990:i:3:p:350-357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.