IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v79y2014i1p31-67.html
   My bibliography  Save this article

Swing options in commodity markets: a multidimensional Lévy diffusion model

Author

Listed:
  • Marcus Eriksson
  • Jukka Lempa
  • Trygve Nilssen

Abstract

We study valuation of swing options on commodity markets when the commodity prices are driven by multiple factors. The factors are modeled as diffusion processes driven by a multidimensional Lévy process. We set up a valuation model in terms of a dynamic programming problem where the option can be exercised continuously in time. Here, the number of swing rights is given by a total volume constraint. We analyze some general properties of the model and study the solution by analyzing the associated HJB-equation. Furthermore, we discuss the issues caused by the multi-dimensionality of the commodity price model. The results are illustrated numerically with three explicit examples. Copyright Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • Marcus Eriksson & Jukka Lempa & Trygve Nilssen, 2014. "Swing options in commodity markets: a multidimensional Lévy diffusion model," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 79(1), pages 31-67, February.
  • Handle: RePEc:spr:mathme:v:79:y:2014:i:1:p:31-67
    DOI: 10.1007/s00186-013-0452-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00186-013-0452-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00186-013-0452-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Mats Kjaer, 2008. "Pricing of Swing Options in a Mean Reverting Model with Jumps," Applied Mathematical Finance, Taylor & Francis Journals, vol. 15(5-6), pages 479-502.
    2. M. Dahlgren, 2005. "A Continuous Time Model to Price Commodity-Based Swing Options," Review of Derivatives Research, Springer, vol. 8(1), pages 27-47, June.
    3. Fred Espen Benth & Jan Kallsen & Thilo Meyer-Brandis, 2007. "A Non-Gaussian Ornstein-Uhlenbeck Process for Electricity Spot Price Modeling and Derivatives Pricing," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(2), pages 153-169.
    4. Ben Hambly & Sam Howison & Tino Kluge, 2009. "Modelling spikes and pricing swing options in electricity markets," Quantitative Finance, Taylor & Francis Journals, vol. 9(8), pages 937-949.
    5. René Carmona & Nizar Touzi, 2008. "Optimal Multiple Stopping And Valuation Of Swing Options," Mathematical Finance, Wiley Blackwell, vol. 18(2), pages 239-268, April.
    6. Patrick Jaillet & Ehud I. Ronn & Stathis Tompaidis, 2004. "Valuation of Commodity-Based Swing Options," Management Science, INFORMS, vol. 50(7), pages 909-921, July.
    7. M. I. M. Wahab & Z. Yin & N. C. P. Edirisinghe, 2010. "Pricing swing options in the electricity markets under regime-switching uncertainty," Quantitative Finance, Taylor & Francis Journals, vol. 10(9), pages 975-994.
    8. Edoli, Enrico & Fiorenzani, Stefano & Ravelli, Samuele & Vargiolu, Tiziano, 2013. "Modeling and valuing make-up clauses in gas swing contracts," Energy Economics, Elsevier, vol. 35(C), pages 58-73.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nadarajah, Selvaprabu & Secomandi, Nicola, 2023. "A review of the operations literature on real options in energy," European Journal of Operational Research, Elsevier, vol. 309(2), pages 469-487.
    2. Roberto Daluiso & Emanuele Nastasi & Andrea Pallavicini & Giulio Sartorelli, 2020. "Pricing commodity swing options," Papers 2001.08906, arXiv.org.
    3. M. Basei & A. Cesaroni & T. Vargiolu, 2013. "Optimal exercise of swing contracts in energy markets: an integral constrained stochastic optimal control problem," Papers 1307.1320, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. Lars Kirkby & Shi-Jie Deng, 2019. "Swing Option Pricing By Dynamic Programming With B-Spline Density Projection," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(08), pages 1-53, December.
    2. Hendrik Kohrs & Hermann Mühlichen & Benjamin R. Auer & Frank Schuhmacher, 2019. "Pricing and risk of swing contracts in natural gas markets," Review of Derivatives Research, Springer, vol. 22(1), pages 77-167, April.
    3. Nicolas Essis-Breton & Patrice Gaillardetz, 2020. "Fast Lower and Upper Estimates for the Price of Constrained Multiple Exercise American Options by Single Pass Lookahead Search and Nearest-Neighbor Martingale," Papers 2002.11258, arXiv.org.
    4. Piergiacomo Sabino, 2021. "Normal Tempered Stable Processes and the Pricing of Energy Derivatives," Papers 2105.03071, arXiv.org.
    5. Giorgia Callegaro & Luciano Campi & Valeria Giusto & Tiziano Vargiolu, 2017. "Utility indifference pricing and hedging for structured contracts in energy markets," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(2), pages 265-303, April.
    6. Deschatre, Thomas & Féron, Olivier & Gruet, Pierre, 2021. "A survey of electricity spot and futures price models for risk management applications," Energy Economics, Elsevier, vol. 102(C).
    7. Tiziano De Angelis & Yerkin Kitapbayev, 2018. "On the Optimal Exercise Boundaries of Swing Put Options," Mathematics of Operations Research, INFORMS, vol. 43(1), pages 252-274, February.
    8. Roberto Daluiso & Emanuele Nastasi & Andrea Pallavicini & Giulio Sartorelli, 2020. "Pricing commodity swing options," Papers 2001.08906, arXiv.org.
    9. Dong, Wenfeng & Kang, Boda, 2019. "Analysis of a multiple year gas sales agreement with make-up, carry-forward and indexation," Energy Economics, Elsevier, vol. 79(C), pages 76-96.
    10. Soren Christensen & Albrecht Irle & Stephan Jurgens, 2012. "Optimal multiple stopping with random waiting times," Papers 1205.1966, arXiv.org.
    11. Hain, Martin & Kargus, Tobias & Schermeyer, Hans & Uhrig-Homburg, Marliese & Fichtner, Wolf, 2022. "An electricity price modeling framework for renewable-dominant markets," Working Paper Series in Production and Energy 66, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    12. Rodrigo S. Targino & Gareth W. Peters & Georgy Sofronov & Pavel V. Shevchenko, 2017. "Optimal Exercise Strategies for Operational Risk Insurance via Multiple Stopping Times," Methodology and Computing in Applied Probability, Springer, vol. 19(2), pages 487-518, June.
    13. Cartea, Álvaro & González-Pedraz, Carlos, 2012. "How much should we pay for interconnecting electricity markets? A real options approach," Energy Economics, Elsevier, vol. 34(1), pages 14-30.
    14. Christian Bender & Nikolai Dokuchaev, 2013. "A First-Order BSPDE for Swing Option Pricing," Papers 1305.3988, arXiv.org.
    15. Hain, Martin & Schermeyer, Hans & Uhrig-Homburg, Marliese & Fichtner, Wolf, 2017. "An Electricity Price Modeling Framework for Renewable-Dominant Markets," Working Paper Series in Production and Energy 23, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    16. Cartea, Álvaro & Jaimungal, Sebastian & Qin, Zhen, 2019. "Speculative trading of electricity contracts in interconnected locations," Energy Economics, Elsevier, vol. 79(C), pages 3-20.
    17. Angelica Gianfreda & Derek Bunn, 2018. "A Stochastic Latent Moment Model for Electricity Price Formation," BEMPS - Bozen Economics & Management Paper Series BEMPS46, Faculty of Economics and Management at the Free University of Bozen.
    18. Rodrigo S. Targino & Gareth W. Peters & Georgy Sofronov & Pavel V. Shevchenko, 2013. "Optimal insurance purchase strategies via optimal multiple stopping times," Papers 1312.0424, arXiv.org.
    19. M’hamed Gaïgi & Stéphane Goutte & Idris Kharroubi & Thomas Lim, 2021. "Optimal risk management problem of natural resources: application to oil drilling," Annals of Operations Research, Springer, vol. 297(1), pages 147-166, February.
    20. Aleksandrov, Nikolay & Espinoza, Raphael & Gyurkó, Lajos, 2013. "Optimal oil production and the world supply of oil," Journal of Economic Dynamics and Control, Elsevier, vol. 37(7), pages 1248-1263.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:79:y:2014:i:1:p:31-67. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.